SOUTHWEST RESEARCH INSTITUTE

POST OFFICE DRAWER 2B510 » 6220 CULEBRA ROAD * SAN ANTONIO, TEXAS, USA 78284 « {512) 6B4-5111*TELEX 76-7357

May 22, 1990

Ms. Linda Uljon

NASA - Johnson Space Center
Building #12, Room 275, FS 72
Houston, Texas 77058

Subject: Delivery of Final Report for the Research into Display Sharing for
the MCC; NASA Grant Number NAG9-370; SwRI Project Number 05-2922

Dear Ms. Uljon:

Enclosed with this letter is the final report summarizing our research
into Display Sharing techniques using X Windows. This report outlines, in
detail, an X Windows based approach to Display Sharing. The report also
describes the current Display Sharing prototype system now installed and
running at both SwRI and NASA laboratories.

Steve Hugg will be contacting you to set up a date for a presentation
of the report’s contents. If you have any questions or concerns, please
call Steve Hugg at (512) 522-2780.

Sincerely,

st TRl

Melvin A. Schrader
Director
Data Systems Department

MAS :PFF:pam

cc: Steven B. Hugg
Susan B. Crumrine,dlg(.
Paul F., Fitzgerald
Nina Y. Rosson
Stephen R. Johns
William A. Bayliss
Larry Bishop (NASA-JSC)
Mike Kearney (NASA-JSC)

L,NASA Scientific and Technical Information Facility (2 coples)

. TEXAS, AND WASHINGTON, 0 C

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

RESEARCH INTO DISPLAY SHARING
TECHNIQUES FOR DISTRIBUTED
COMPUTING ENVIRONMENTS

/ EINAL REPORT

NASA Grant No. NAG9-370
SwRI Project No. 05-2922

Prepared by:

Steven B. Hugg
Paul F. Fitzgerald, Jr.
Nina Y. Rosson
Stephen R. Johns

Prepared for:

NASA Lyndon B. Johnson Space Center
Houston, TX 77058

May 22, 1990

Approved:

Dt AT oRoulr

Melvin A. Schrader, Director
Data Systems Department

it

U . l

(i

1.0

2.0

3.0

INTRODUCTION

TABLE OF CONTENTS

THEORY OF OPERATION .

2.1 System Operation . .
2.1.1 Displays, Windows and Clients
2.1.2 Transmitting Displays From a Workstation
2.1.3 Receiving Displays At a Workstation .
2.2 User Operation . .o e e

E NN
NN
(W, I SR VR L N

SYST

3.1

uu;}

P
3.1.
3.1.
3.1.
3.1.

3.1.3 r

3.
P
3.
3
3
3

3.1.4

wuwwuwwwug‘uw
lalalalalalalolaldlake

1.
ot
1.
1.
1
1

o -

b b-c-#~¢~¥~¥-b-¢-h'uxu:

Retrieve Channel Guide
Send Display Requests .
Receive Display Requests
Remove Channel Requests .
Remove Receiver Requests

ARCHITECTURE .
isplay Sharing Workstation

e D
.1.1 X Server Modification .
.1.2 rotocol Distributor

2.1 PD Initialization

2.2 PD Processing . .

2.2.1 X Protocol Transmission
2.2.

2 State Information Transmission and Shared

Memory Requests .
2.3 Protocol Distributor I/O Packet Structure
tocol Receiver .
3.1 PR Initialization
3.2 PR Processing . .
3.2.1 X Protocol Reception
3.2

Memory Requests .

.3 Local Expose Event Solicitation

Protocol Receiver I/0 Packet Structure

istribution Manager

ILDM Initialization

LDM Processing B
Retrieve TV Guide .
Distribution Authorization Request
Reception Authorization Request
Cancel Distribution on Channel
Cancel Reception on Channel
Stop Central Distribution Manager
Quit

NNNNNNNNHCWM

\IO\UIJ-\UJNH

3.2 Dedicated Display Sharing Host .
3.2.1 Central Distribution Manager

3.2.
3.2.

1.1 CDM Initialization
1.2 CDM Processing

3.2.2 Protocol Multiplexer

.2 State Information Transmission and Shared

=

N

OOV OWORARNMTNNDNDN

15

15
15
22
22
23
23

23
27
27
27
29
29

30
31
31
31
31

32
32
32
33
33
33
33
34
34
34
35
36

my Ume D 2ED Ume B

m W (i e (N

(RED

'
i

TABLE OF CONTENTS (Continued)

.1 PM Initialization

.2 PM Processing

.2.1 New Connections .
.2.2 Protocol Dispatching

.3 Performance and Redundancy

W W WwwWww
NN
NN

4.0 USING THE DISPLAY SHARING PROTOTYPE IN MOSL .

5.0

7.0

Equipment

Setup

4.2.1 Removal of Ford Variant Server
3 Process and Shared Memory Cleanup
4 Startup .

5 Distributing a Window

6 Receiving a Window . .

.7 Shutdown of Display Sharing

8

9

1

& &
N

Restarting Display Sharing .
Starting an Application .
.10 Finishing Display Sharing Session .

I SRR A

DISPLAY SHARING SOFTWARE DESCRIPTION

5.1 Source and Destination Station Software
5.1.1 Server
5.1.1.1 Modified Server Version

5.1.1.2 Pseudo Modified Server Version

5.1.2 Protocol Distributor (PD)

5.1.3 Protocol Receiver (PR) . .

5.1.4 Local Distribution Manager (LDM)
5.2 Dedicated Host Software .

5.2.1 Central Distribution Manager (CDM)

5.2.2 Protocol Multiplexer (PM)

DISPLAY SHARING RESEARCH TOOLS
6.1 Protocol Profiler
6.2 Stand Alone Version
6.3 Display Sharing Version
PROTOTYPE EVALUATION
7.1 Workstation Performance
7.1.1 Modified X Server Approach

7.1.2 Display Sharing Wedge Approach
7.2 Network Performance .

ii

37
37
37
38
39

40

40
40
41
42
43
44
44
45
45
45
46

47

47
47
47
47
48
48
49
49
49
49

50

50
50
50

52

52
52
53
53

{

(e

N

rm oy

e

I i

1

CH

!

TABLE OF CONTENTS (Continued)

8.0 OUTSTANDING ISSUES

0o 00 00 00 00 00 OO GO 00 OO OO OO

Colormaps

Fonts .

Expose Events . .

Delay Until Appearance . .

Multiple Windows Per Client . .
Using the Display Sharing Wedge Approach .
Shared Memory and Semaphores . .
Optimized X Code .

Discontinued Distribution of Window

Voo~ WN

.10 Redundant Dedicated Hosts . . .
.11 Multiple Window Id’s Over the Network .
.12 geml2 File e e e e e e e e

iii

56

56
56
56
57
57
57
57
58
58
58
58
59

IIF

tl

|

4o
4

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

NPWONOZIHNARUHIOMMMmMOO®D»

APPENDICES

WORKSTATION LOCAL SHARED MEMORY

DEDICATED HOST SHARED MEMORY

I/0 REQUEST TYPES

RPC REQUEST CODES

RPC DATA STRUCTURE FOR RETRIEVE TV GUIDE

RPC DATA STRUCTURE FOR DISTRIBUTION AUTHORIZATION
RPC DATA STRUCTURE FOR RECEPTION AUTHORIZATION
RPC DATA STRUCTURE FOR CANCEL DISTRIBUTION

RPC DATA STRUCTURE FOR CANCEL RECEPTION
CHANNEL MAP AND STATION STRUCTURES

SERVER LISTINGS

PROTOCOL DISTRIBUTOR LISTINGS

PROTOCOL RECEIVER LISTINGS

LOCAL DISTRIBUTION MANAGER LISTINGS

CENTRAL DISTRIBUTION MANAGER LISTINGS
PROTOCOL MULTIPLEXER LISTINGS

ALTASES AND SCRIPT FILES

RPC RELATED INCLUDE FILES

DISPLAY SHARING INCLUDE FILES

iv

.

o Wl

il

[
BN
x

Inme

(e

[

[

e ‘

e

e

I

p

PWWWWWWWWRNONNDNDRDNDRRD
HNOOUM P WNHFHOXNOWUL & WN O

LIST OF FIGURES

Phase Two Display Sharing Prototype Configuration .

Workstation Configuration . .
Data Flow For X Protocol Distribution .
Data Flow For Reception of X Protocol .
Retrieve Channel Guide Request Path .
Send Display Request Data Path

Receive Display Request Data Path .
Remove Channel Request Data Path
Remove Receiver Request Data Path .

The X Window Server in Unix .

X Graphics Request Path
The X Window Server With Modification .
Multicast Data Flow . e e e

X Protocol Buffers

Get Window Attributes State Information Data Flow .

Get Graphics Context State Information Data Flow
Protocol Multiplexer Data Flow
Display Sharing Window Layout .

al

I iy

W

0w

O

L L

L L e L

ABBREVIATIONS

Bps Bytes Per Second

bps Bits Per Second

CDM Central Distribution Manager
GC Graphics Context

GCS Graphics Context Structure
GGCS Get Graphics Context Structure
GWATS Get Window Atrributes Structure
LAN Local Area Network

LDM Local Distribution Manager
MCCU Mission Control Center Upgrade
MOSL Mission Operations Support Lab
0SI Open Systems Interconnection
PD Protocol Distributor

PM Protocol Multiplexer

PR Protocol Receiver

RGB Red/Green/Blue

RTU Real Time Unix

TCP/IP Transmission Control Protocol/Internet Protocol
TP4 Transport Protocol, class 4
uDP User Datagram Protocol

WATS Window Attributes Structure
Xgcm X Graphics Control Module

XID X Resource Identifier

vi

() D Bt B

AL e Tra

e | e
[}l I

U

e

1.0 INTRODUCTION

This report for NASA Grant NAG9-370, "Research into Display Sharing
Techniques for Distributed Computing Environments, Final Report,” describes
the X-based Display Sharing Solution recommended in the Interim Report
dated September 13, 1989. During the project period covered by this
report, SwRI performed the following activities:

o Identification and evaluation of X-based alternative
architectures

o Selection of an X-based architecture for further study

o Development of the selected X-based alternative prototype

o Identification of typical and atypical displays subject
to Display Sharing

o Development of profiles, based on X-protocol type, of typical
and atypical X displays

o Evaluation of performance degradation and network load
based on the prototype

The Display Sharing Prototype includes the base functionality for telecast
and display copy requirements. Since the prototype implementation is
modular and the system design provided flexibility for the Mission Control
Center Upgrade (MCCU) operational considerationm, the prototype ™
implementation can be the baseline for a production display sharing
implementation. To facilitate the process this report contains the

following discussion:

Theory of Operatiomn
System Architecture
Using the Prototype
Software Description
Research Tools
Prototype Evaluation
Outstanding Issues

0O 0 0O0O0O0OO0

M s

!

A AR

sl

b R ke

LU

L Ioassaesb.

(o

(

2.0 THEORY OF OPERATION

The prototype developed by SwRI is based on the concept of a dedicated
central host performing the majority of the Display Sharing processing,
allowing minimal impact on each individual workstation, as shown in Figure
2.0. Each workstation participating in Display Sharing hosts programs to
facilitate the user’'s access to Display Sharing, as shown in Figure 2.1, as
well as the sending and receiving of displays to and from the dedicated
host machine. The dedicated host machine receives a display from a source
workstation and multiplexes the display to all appropriate receiving
workstations.

2.1 System Operation

At the workstation level, the fundamental component of the prototype is a
custom enhancement to the X window server (see Section 3.1.1). This
modification allows all X protocol received by the server from a client
application to be input into the Display Sharing system, if requested. The
workstation user must request all access to the Display Sharing system.
No unsolicited displays are allowed.

Each display selected for distribution by a workstation operator is
associated with a ’'channel.’ A workstation which is distributing a display
is known as a Source Station. Potential receiving workstation operators
may browse a ‘channel guide’ to select and request a display (channel) for
reception. A workstation which is receiving a distributed display is known
as a Recelving Station.

2.1.1 Displays., Windows, and Clients

Internally in the Display Sharing system, the primary differentiation
between displays is the client id. This value may be obtained from any X
resource identifier (XID) by shifting the number right by 24 bits. For

- example, a typical XID (in hexadecimal) is 0x600001. The client id is 6

(e.g., in most X servers, this number is incremented for each new client;
at the time this client was started there were 6 clients including this
one). The number in the lower nibble (1) indicates the resource number.
The prototype uses the client number to index a number of data structures
on the local workstation and at the dedicated host. It is possible that
the value of an XID on one workstation will equal that of one on another
workstation since XIDs are only meant to refer to local resources. The
prototype does not take this into account when identifying displays from
different clients on different workstations and will not properly handle
the case of two workstations distributing displays (windows) with identical
XIDs. The prototype can make such a distinction with modifications.

2.1.2 Transmitting Displays From a Workstation

When the user elects to send a display, as shown in Figure 2.2, the Local
Distribution Manager (LDM, see Section 3.1.4) on the Source Station sends
the request, including display identification obtained from the user, to

2

il |

A

ur

SOURCE STATION DEDICATED HOST RECEIVING STATION
y s X SERVER X SERVER
CLENT = oo oD
— PROTOCOL
= e[S
— PLEXER
1
Y l
Y —> WEMORY VEMORY
LOCAL EMORY. R LOCAL
DISTRIBUTION }) DISTRIBUTION
MANAGER MANAGER
A Y Vo
: Y SHARED Y }
| PROTOCOL MEMORY PROTOCOL |
| ==t oisTRE HH|| — 71— ||BH oisTR [eqh---
N BUTOR BUTOR -
| P
1 11
(' 11
1 11
I [
I Y Il
| RAL g B
a PROTOCOL |« CENT . PROTOCOL 1
| | 171" Recever [[PISTRIBUTION| =61 ecever [77 1
e > MAI:AGER — I
|
1) S — N S S — N
| I— ——————————————————— |} [} L oo o ol o o o o v e o v ——— -]
| e e e e o e - | e e ——————— - - |
<———=-» RPC CALLS (UDP/IP)

¢——————) SOCKETS (TCP/IP)

i e———

PROGRAMMATIC ACCESS

FIGURE 2.0 PHASE TWO DISPLAY SHARING PROTOTYPE CONFIGURATION

it m i uim e

AL hr ! hr R i

U1 I | DR B

) e N il Bl il el

t ERNE

) MULTIPLEXER)

XLIB
X % X SERVER &
CLIENT _> MOD
X DISTRIBUTION
PROTOCOL REQUESTS
USER DISPLAY +
SHARING REQUESTS
SHARED
MEMORY
LOCAL
DISTRIBUTION X
MAN:GER PROTOCOL
J
X PROTOCOL
: PROTOCOL (TO PROTOCOL
: DISTRIBUTOR MULTIPLEXER)
|
I
I
I
|
|
I X PROTOCOL
! —> PROTOCOL ' (FROM PROTOCOL
: RECEIVER <
I
I
|
|

<« -——>

USER DISPLAY SHARING ACCESS REQUESTS (TO/FROM CENTRAL
e etk 3 DISTRIBUTION
MANAGER)

RPC CALLS (UDP/IP)

) SOCKETS (TcPIP)

- ——

PROGRAMMATIC ACCESS

FIGURE 2.1 WORKSTATION CONFIGURATION

ARG A MR ——— L e IH N WM AR

L1 JYI JEIi | G) g s |

RECEIVING STATION

X SERVER &
MOD

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

PROTOCOL
DISTRIBUTOR

PROTOCOL
RECEIVER

SOURCE STATION DEDICATED HOST
X X SERVER &
CLIENT C::D MOD
X
PROTOCOL | — pROTOCOL
PROTOCOL MULTIPLEXER
X
| | ProTocOL
SHARED |
oL MEMORY
DISTRIBUTION
MANAGER X H
PROTOCOL
SHARED
MEMORY
PROTOCOL
DISTRIBUTOR
PROTOCOL Dlg'I"E;gE%IbN
RECEIVER S ANAGER
< ———-» RPC CALLS (UDP/IP)
{————> sOocKETS (TcP/P)

-—>» PROGRAMMATIC ACCESS

FIGURE 2.2 DATA FLOW FOR X PROTOCOL DISTRIBUTION

i
3

the Central Distribution Manager (CDM, see Section 3.2.1). The CDM
mediates the request, and if approved, selects a channel to associate the
display. Once the LDM has received approval for distribution the LDM
notifies both the Source Station’s Server Mod (see Section 3.1.1) and the
Source Station's Protocol Distributor (PD, see Section 3.1.2) that this
particular display is now 'wanted’ for distribution.

The PD, having received notification of a new ’‘wanted’ display for
distribution, monitors a shared memory area used by all the local Display
Sharing processes for communications. When X protocol from an X client,
whose display is being distributed, 1is received by the X server
modification, it is copied into that shared memory area and the PD 1is
alerted. The PD then retrieves the X protocol from the shared memory area
and sends it to the Protocol Multiplexer (PM, see Section 3.2.2).

2.1.3 Receiving Displays At a Workstatiom

The workstation operator may select to receive a display, as shown In
Figure 2.3, from a list of channels received from the Receiving Station’s
LDM. The LDM sends the reception request to the CDM. The CDM mediates the
request and sends the response back to the LDM for notification to the
user. The CDM also requests the PM to add a new Receiving Station to the
1ist of receivers for that particular chaqnel.

When the PM receives X protocol from a Source Station’s PD, it then sends
the X protocol to every Receiving Station’s PR (Protocol Recelver, PR, see
Section 3.1.3) selected to receive that channel. The Receiving Station’s
PR then begins to receive X protocol from the PM and processes the protocol
(see Section 3.1.3), and then sends the protocol to the local X server for
display.

2.2 User Operation

The workstation operator has access to the Display Sharing system using a
graphical user interface, accessible through a window manager selection.
The user interface is driven by the local LDM, which is the initiator of
all send and receive requests. .

2.2.1 Retrieve Channel Guide

A retrieve channel guide request, as shown in Figure 2.4, is initiated by
selecting the Retrieve Channel Guide option presented by the LDM (see
Section 3.1.4). The LDM passes this request on to the CDM (see Section
2.1.1) who keeps the current channel guide. The CDM returns the current
channel guide 1list to the LDM, who in turn presents this list to the
workstation operator. The channel guide list is a list of active channels.
The channels are represented by an alpha-numeric identification.

W TR st

0
[I

bl I

SOURCE STATION DEDICATED HOST RECEIVING STATION
X X SERVER & XSERVER S (-
CLIENT MOD) MOD
PROTOCOL |LROTOCOL
MULTIPLEXER []
SHARED SHARED
—— MEMORY MEMORY ——
DISTRIBUTION DISTRIBUTION
MANAGER MANAGER
SHARED
MEMORY
PROTOCOL PROTOCOL
DISTRIBUTOR DISTRIBUTOR
X
PROTOCOL
PROTOCOL DiSTABUTION Ly pROTOCOL |
RECEIVER S ANAGER RECEIVER
~¢-——-» RPC CALLS (UDP/IP)

{———> sOcKEeTS (TCP/P)

~—p PROGRAMMATIC ACCESS

FIGURE 2.3 DATA FLOW FOR RECEPTION OF X PROTOCOL

(I

uny

¢l [

SOURCE STATION

X X SERVER &
CLIENT MQOD

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

PROTOCOL
DISTRIBUTOR

PROTOCOL
RECEIVER

CHANNEL GUIDE REQUEST

<€ -——-3 RPC CALLS (UDP/IP)

f
|
i
|
[%

{————) sockeTs (TcPIP)

DEDICATED HOST

RECEIVING STATION

X SERVER &
MOD

PROTOCOL
MULTIPLEXER

SHARED
MEMORY

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

PROTOCOL
DISTRIBUTOR

CENTRAL
DISTRIBUTION
MANAGER

PROTOCOL
RECEIVER

A {

-¢«——>» PROGRAMMATIC ACCESS

FIGURE 2.4 RETRIEVE CHANNEL GUIDE REQUEST PATH

| I | a1 il [} e e e e ‘=N I Nl Dl BN | nnmmrrm

{

2.2.2 Send Display Requests

A send display request, as shown in Figure 2.5, is initiated by selecting
the Distribution Authorization option presented by the LDM (see Section
3.1.4). The operator is then prompted to use the mouse pointer to indicate
which display to make available for distribution. Once the selection is
made the operator 1is then prompted to provide an alpha-numeric
identification for that display. This identification is associated with
the channel selected for this display by the CDM.

When this process is complete, the LDM transmits the request to the CDM
(see Section 2.1.1). If the CDM approves the request to distribute, no
further operator action is required.

2.2.3 Receive Display Requests

A receive display request, as shown in Figure 2.6, 1is initiated by
selecting the Reception Authorization option presented by the LDM (see
Section 3.1.4). The LDM then presents the operator with a list of channels
(along with an alpha-numeric identification) available for reception. The
operator may select to receive one or more chanmels. Once the selection
has been made, the LDM notifies the local PD (see Section 3.1.2) and Server
Mod (see Section 3.1.1) of the channel selected. When X protocol is

received for that channel by the PR (see Section 3.1.3) it is processed and ~

passed on to the local X server. A window is then created by the PR for
the requested channel’s display. Note that at this point, the placement of
the window on the screen is handled by the local window manager. Once the
operator has placed the window on the screen, it is drawn to in the same
manner as that of the original window on the Source Station.

2.2.4 Remove Channel Requests

A remove display request, as shown in Figure 2.7, is initiated by selecting
the Remove Channel option presented by the LDM (see Section 3.1.4). This

 request is used to remove a display (channel) from distribution. The LDM

prompts the operator to indicate which channel it wishes to stop
distributing on. The LDM then notifies the local PD (see Section 3.1.2)
and Server Mod (see Section 3.1.1) to no longer distribute the X protocol
for the display which is associated with the selected chamnel. The LDM
also notifies the CDM (see Section 3.2.1) that the display for that
particular channel is no longer available. The CDM, in turn notifies the
PM (see 3.2.2) and no further X protocol for that channel is distributed.

2.2.5 Remove Recejver Requestg

A remove receiver request, as shown in Figure 2.8, is initiated by
selecting the Remove Receiver option presented by the LDM (see Section
3.1.4). This request is used to indicate that the workstation operator no
longer wishes to receive a particular channel display. The LDM prompts the
operator to indicate which display (channel) to discontinue. The LDM then

Wl

|

g

0l i

[

(-

{

IS 115 N

mw.“ 1
i

SOURCE STATION

X
CLIENT

X SERVER &
MOD

DISTRIBUTE

COMMAND

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

-

DISTRIBUTE

A

- ——~~—-p RPC CALLS (UDP/IP)

{————> SOCKETS (TCP/P)

COMMAND

PROTOCOL
DISTRIBUTOR

PROTOCOL
RECEIVER

DISTRIBUTION REQUEST

DEDICATED HOST

PROTOCOL
MULTIPLEXER

A

NEW
DISTRIBUTOR
INFO

SHARED
MEMORY

A

NEW
DISTRIBUTOR
INFO

CENTRAL
DISTRIBUTION
MANAGER

A

T
l
|
{
L

-€«——>» PROGRAMMATIC ACCESS

RECEIVING STATION

X SERVER &
MOD

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

PROTOCOL
DISTRIBUTOR

PROTOCOL
RECEIVER

FIGURE 2.5 SEND DISPLAY REQUEST DATA PATH

s

I !

{

-

SOURCE STATION
X X SERVER &
CLIENT MOD
SHARED
AL MEMORY
DISTRIBUTION
MANAGER
PROTOCOL
DISTRIBUTOR
PROTOCOL
RECEIVER
<€ -—-—-» RPC CALLS (UDP/IP)

{———) SOCKETS (TcPIP)

DEDICATED HOST

RECEIVING STATION

X SERVER &
MOD

PROTOCOL
MULTIPLEXER

A

NEW
RECEIVER
INFO

SHARED
MEMORY

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

A

NEW
RECEIVER
INFO

PROTOCOL
DISTRIBUTOR

CENTRAL
DISTRIBUTION
MANAGER

PROTOCOL
RECEIVER

A

-¢—>» PROGRAMMATIC ACCESS

FIGURE 2.6 RECEIVE DISPLAY REQUEST DATA PATH

RECEPTION REQUEST

ore "

IR

|

SOURCE STATION
X X SERVER &

CLIENT MOD
REMOVE REMOVE
CHANNEL CHANNEL
COMMAND COMMAND

SHARED

= MEMORY

DISTRIBUTION
REMOVE
MANAGER CHANNEL
A COMMAND

| 1

I |

| |

l | PROTOCOL

L DISTRIBUTOR

| |

| |

1 1

| |

| 1

| |

| |

| |

} ! PROTOCOL

! i RECEIVER

I I

| |

I I

[|

|

1

|

| -

REMOVE CHANNEL REQUEST j

- ———-p RPC CALLS (UDP/IP)

&> sockEeTs (TCP/P)

-—>» PROGRAMMATIC ACCESS

FIGURE 2.7 REMOVE CHANNEL REQUEST DATA PATH

DEDICATED HOST

RECEIVING STATION

X SERVER &
MOD

PROTOCOL
MULTIPLEXER

REMOVE
CHANNEL
REQUEST

SHARED
MEMORY

SHARED
MEMORY

LOCAL
DISTRIBUTION
MANAGER

X

REMOVE
CHANNEL
REQUEST

PROTOCOL
DISTRIBUTOR

CENTRAL
DISTRIBUTION
MANAGER

PROTOCOL
RECEIVER

A

(il

(m-

SOURCE STATION DEDICATED HOST RECEIVING STATION
X CLOSE
X X SERVER & X SERVER & Q_— DISPLAY ()
CLIENT MOD MOD
REMOVE
PROTOCOL RECEIVER
MULTIPLEXER REQUEST
A
REMOVE
RECEIVER
SHARED REQUEST SHARED
LOCAL MEMORY MEMORY LOCAL
DISTRIBUTION DISTRIBUTION
MANAGER MANAGER
L
Y
SHARED Do
MEMORY Iy
PROTOCOL PROTOCOL I
DISTRIBUTOR A DISTRIBUTOR o
|
REMOVE | |
REMOVE RECEIVER! |
RECEIVER REQUEST | |
REQUEST Lo
|
_ I
PROTOCOL DISTAIBLTON PROTOCOL P
|
A b
|
Lo REMOVE RECEIVER REQUEST | |
I I i
R [P
REMOVE RECEIVER ACKNOWLEDGMENT
<€ -—-—~-p RPC CALLS (UDP/IP)
{———) SOCKETS (TCP/P)

—>» PROGRAMMATIC ACCESS

FIGURE 2.8 REMOVE RECEIVER REQUEST DATA PATH

) e (W e [i ume MM oe (B M@ Mme U e T e e 1w

orrooTT o

o

(

'

notifies the CDM (see Section 3.2.1) to remove this particular Receiving
Station from the list of Receiving Stations for the selected channel. The
CDM also passes this notification on to the PM (see Section 3.2.2).

14

e
=
= |

t!

P

iS8

3.0 SYSTEM ARCHITECTURE

3.1 The Display Sharing Workstation

The Display Sharing Workstation, as shown in Figure 2.1, hosts three
Display Sharing processes and a modified X Window Server. All of these
processes work together to facilitate the distribution and reception of X

protocol.

3.1.1 X Server Modification

The X Server encompasses two main divisions of labor, as shown in Figure
3.0 as follows:

o}

Operating System related functions and Graphics Hardware related
functions. The Operating System functions handle all of the
communications between client and server; for a Unix system, the
base level is the reading and writing of a file descriptor. When
a client connects to a server in a Unix system, it is given a data
structure, called the Display structure. The display structure
contains information about the server connection and the server.
The structure also contains a file descriptor used to communicate
with the server. As an X client makes graphics requests, Xlib
turns the requests into X protocol packets and stores them in a
buffer area, as shown in Figure 3.1. When the buffer area is
full, it is 'flushed’ to the server by writing the buffer to the
Display connection file descriptor.

On the server side, this X protocol is read from the X client’s
file descriptor and then acted upon by the Server. Any replies or
error returns are written back to the X client using the same file
descriptor. The current Display Sharing prototype uses a
modification to the X server, as shown in Figure 3.2, such that
the X protocol packet just read from an individual X client is
stored for use by the Display Sharing system.

The modification to the server consisted of a single line of source code.
The line, a C statement shown below, was added at a point in the server
where the protocol packet is read from an X client:

(void)multicast(client,ptr,len);

Where: multicast; the name of a subroutine to be called with

the following arguments:

client; the client index whose protocol was just
read. This number can be obtained by
shifting any XID right 20 bits.

ptr; a pointer to the I/0 packet just read from a
client.

15

. | N m 3 U EE N I 11 I— il i | im0 '] 3 e

r ot T |

m 1r o

UNIX

FILE
DESCRIPTOR
APPLICATION
(CLIENT) UNIX
FILE
DESCRIPTOR
APPLICATION e3>
(CLIENT) UNIX
FILE
DESCRIPTOR
APPLICATION
(CLIENT)

CLIENT IO

DISPATCHING:

« MONITOR CLIENT
CONNECTIONS.

« DISPATCH MOUSE

AND KEYBOARD
EVENTS.

« PASS GRAPHICS
COMMANDS ON.

GRAPHICS
COMMANDS
—»1

1

!

CLIENT GRAPHICS
COMMAND HANDLER:

+ RECEIVE CLIENT
GRAPHICS
COMMANDS.

- DECOMPOSE THE
REQUEST.

+ CALL CORRECT
GRAPHICS SUB.

KEYBOARD

MQUSE

!

DEVICE
DRIVER(S)

'

GRAPHICS
DISPLAY

FIGURE 3.0 THE X WINDOW SERVER IN UNIX

oo JY iy | " lme [

) (i | [I N T
i , [i

APPLICATION

PROGRAM
XDrawline () X
SUBROUTINE CALL CLIENT
XLIB

X_PolySegmentReq
PROTOCOL REQUEST

SERVER

APPROPRIATE
GRAPHICS COMMANDS

GRAPHICS
HARDWARE

FIGURE 3.1 X GRAPHICS REQUEST PATH

i

TR

t

e
|

X CLIENT 11O
CLIENT DISPATCHING:
« MONITOR CLIENT
% PROTOCOL <rven CONNECTIONS.
> 100 | * DISPATCH MOUSE
AND KEYBOARD
EVENTS.
« PASS GRAPHICS
COMMANDS ON.
X PROTOCOL
DISPLAY
SHARING
SHARED

MEMORY

CLIENT GRAPHICS
COMMAND HANDLER:

+ RECEIVE CLIENT
GRAPHICS
COMMANDS.

+ DECOMPOSE THE
REQUEST.

+ CALL CORRECT
GRAPHICS SUB.

FIGURE 3.2 THE X WINDOW SERVER WITH MODIFICATION

e LD B e MUY DA oo e

I e (I /N I e it) il | s tinm

) I

cer oo e

¢

len; - 1, if the source of the protocol was local.
- Actual number of X protocol request bytes
pointed to by ptr, if the source of the
protocol was from the network. (len is not
used by the Display Sharing prototype).

SwRI defined the requirement, and Concurrent added the single line of code
to their X server, X Graphics Control Module (Xgcm), and performed an
incremental link, leaving one unresolved reference, namely multicast. SwRI
provided the multicast routine. The object module multicast.o was then
linked, by SwRI, with the load module Xgem (with 1 unresolved reference).
The link results in a fully linked and executable X server, XGCM.

The multicast subroutine, as shown in Figure 3.3, is called each time there
is X protocol read by the server from any client. The first time the
routine is called, it creates a shared memory area for use in communication
with the Protocol Distributor (PD), Protocol Receiver (PR), and Local
Distribution Manager (LDM). Appendix C contains a listing and explanation
of the data members of this shared memory area. Multicast also initializes
this shared memory area, creates some semaphores to control dual access to
shared memory, and then continues with normal multicast processing.

The next action taken by multicast determines if the X protocol packet is
an X request concerning a graphics context (see X1ib Programming Manual’'s
1 and 2 for detailed information on Graphics Contexts). Such a request
results when the client makes an X graphics call such as X ChangeGC, which
is used to change various values in a particular graphics context. The
graphics context contains information such as foreground and background
color, or line style and width. The X implementation requires that
multicast store the state information for future use by the Display Sharing
system.

To understand this constraint consider that all X resources (i.e.,
colormaps, fonts, windows, graphics contexts) are referenced by a unique id
number, called an XID. This XID is used by the X server to identify the
resource and index into the server’s local data space for state information
concerning the resource. The graphics context, however, is handled
slightly differently. The graphics context, or GC, contains the type of
information which may change quite rapidly, depending on the application.
Line style, line width, and colors are examples of these types of data. In
order to reduce network traffic and improve efficiency, the graphics
context state information is contained in the X client’s data space, as
shown in Figure 3.4, as well as the server's. This allows the X client
(actually X1ib) to send only the members of the GC which have changed, not
the entire GC, thereby reducing the number of bytes sent (and thus network
traffic).

Currently, there is no standard way for one X client to retrieve state
information for another X client's GC, even if the XID of that GC is known.

19

(1 Dl .

t

MULTICAST

CALLED
YES CREATE
SHARED MEM
NO CREATE
SEMAPHORES
STORE GC
-—i
UALUES INITIALIZE
RETURN NO
YES
COPY PROTOCOL
AND ALERT
PROTOCOL
DISTRIBUTOR

FIGURE 3.3 MULTICAST DATA FLOW

I
Lol

Uiime B

[V

BUFFER 0 (EMPTY)

BUFFER 1 (EMPTY)

BUFFER 2 (FULL)

READ PROTOCOL

BUFFER 3 (FILLING)

WRITE PROTOCOL
-
MODIFIED
X SERVER

BUFFER N

FIGURE 3.4 X PROTOCOL BUFFERS

PROTOCOL
DISTRIBUTOR

m

MR

(A

This presents a problem when a Receiving Station’s PR begins to receive X
protocol from a particular Source Station. The X protocol which it
receives will contain XIDs, which refer to X resources on the Source
Station only and are not directly translatable into resources on the
Receiving Station. This means that the PR must create a resource locally
which is identical to the resource on the Source Station. For a GC, this
means that state information contained in the GC must be retrieved from the
Source Station and transmitted to the Receiving Station. Since there is no
standard programmatic method for accessing this state information external
to the client which created the GC, the state information must be stored by
multicast on the first X protocol transfer from the client to the server.

The storage of this state information must take place even for clients
which are not currently being distributed. This is necessary to maintain
the currency of the state information in case that client is distributed in
the future.

Determination of whether a client is distributed is based on a set of flags
in the shared memory area. These flags are implemented as an array
(wanted) of integers which are used to indicate when a particular client’s
protocol is ’'wanted’ for distribution. The LDM sets and clears the values.
If the X protocol received is for a client which is not currently 'wanted’,
multicast simply returns and takes no further action. If the X protocol
received is from a client which is ‘wanted’ for distribution, multicast
copies the client buffer into shared memory and notifies the PD that there
is protocol available for distribution by unlocking the semaphore
associated with that buffer. Multicast then returns and takes no further
action,

3.1.2 Protocol Distributor

The Protocol Distributor (PD) is a separate task, responsible for routing
X protocol from a distributed client (X application) to the Protocol
Multiplexer (PM). When multicast places X protocol into the shared memory
buffer, PD copies the protocol out of shared memory, forms a standard
Display Sharing data package, and then writes the data package to the PM.
The PD also responds to requests from the local Protocol Receiver (PR),
indicated through shared memory area flags, to send state information
concerning window attributes or graphics contexts to the PM.

3.1.2.1 PD Initjalization
Upon initialization, PD takes the following sequence of actions:
o Set up signal catching/handling routines for SIGALRM (used for
timeout purposes) and SIGUSR1l (used by the PR to signal a state
information request).

o Attach to the shared memory segment created by multicast.

o Make contact with the Central Distribution Manager (CDM) and the
PM. This is done by issuing a remote procedure call (RPC)

22

|
I

w:r !

'

(i

broadcast to any existing CDM. On the basis of this broadcast,
the CDM assigns the PD a unique ID number, indicating that all the
necessary data structures have been set up by the CDM and the PM.

o The PD then connects to the PM by first creating a socket with
the socket() system call, and then connecting and establishing a
logical circuit to the PM by using the connect() system call. At
this point the PD has established a logical connection path to
the PM. This is the path used to transmit X protocol from the
source workstation to the PM.

3.1.2.2 PD Processing

The following paragraphs outline the processing performed by PD.

3.1.2.2.1 X Protocol Transmission

In the shared memory area created by multicast there are multiple buffers
used (rotationally) to transmit X protocol between multicast and PD.
Access to each buffer is controlled using a separate semaphore. The PD
checks each buffer sequentially, attempting to lock the semaphore
associated with each buffer, as shown in Figure 3.4, and then process the
X protocol contained in the buffer. PD does not proceed to the next buffer
until it has successfully locked the current buffer and processed X
protocol from that buffer.

The buffer which multicast fills for PD may contain more than one X
protocol request. Once PD has locked the buffer, it must parse the buffer
and determine each type of X protocol request. Not all protocol requests
are passed on to the PM. Some are not valid for distribution, such as
X ListFonts or X GetImage. These types of requests require a reply from
the server and do not directly affect what is seen on the screen. Only the
protocol which affects the information presented on the screen, and does
not require a reply from the server, is distributed. PD decides which X
protocol is valid for distribution. With each distributable protocol
request, PD builds a standard data package to send to the PM. This data
package contains information such as the unique client number associated
with the protocol, and the total number of bytes (see Section 3.1.2.3),.
Once the data package is built, the semaphore associated with that buffer
is unlocked, and the data package is written to the file descriptor
associated with the network connection to the PD.

3.1.2.2.2 State Informatjon Transmission and Shared Memory Requestsg

The PD may be requested, by the PR, to send state information (such as
window attributes and graphics contexts) to the PM. The PR may do this by
setting a request flag in shared memory and then sending a SIGUSR1 signal
to the PD. Upon reception of the SIGUSR1 signal, the PD may perform one of
the following (based on shared memory flags):

o Get Window Attributes: This request is made by the PR when state

information concerning a window on another workstation is needed.

23

ime e

The PM gets the request, routes it to the proper workstation, and
the PR/PD on that workstation sends out the state information.
Eventually, that state information is received by the local PR and
is used to create a local window. Figure 3.5 shows the path of a
Get Window Attributes request and the actual state information
through the Display Sharing system.

Get Graphics Context: This request is made by the PR when it
needs state information concerning a graphics context on another

workstation. The PM gets the request, routes it to the proper
workstation, and the PR/PD on that workstation sends out the state
information. Eventually, that state information is received by
the local PR and is used to create a local graphics context.
Figure 3.6 shows the path of a Get Graphics Context request and
the actual state information through the Display Sharing system.

Send Window Attributes: This request is made by the PR when it

has received a request from the PM to send a particular window's
current window attributes. The PD copies the window attributes
out of shared memory (having been placed there by the PR) and
sends these attributes to the PM, who in turn routes it to the
requesting PD/PR.

Send Graphics Context: This request is made by the PR when it has

received a request from the PM to send a particular graphics
context’s current state information. The PD copies the graphics
context out of shared memory (having been constantly updated and
replaced by multicast) and sends this information to the PM, who
in turn routes it to the requesting PD/PR.

Send Expose Event: This request is made by the PR when it has
created a window (based on in-coming X protocol) and needs to
receive an update on all the windows from the distributor of that
window. The request is sent on to the PM, who determines the
source station for the particular window, and the PM sends the
request to the PR on that workstation. The PR there causes an
expose event to occur for the window being distributed. Assuming
that expose events are handled properly by the client displaying
the window, the result is a stream of X protocol visually
describing those parts of the window that do not normally get
updated (labels, borders, static data).

24

-

1

U

1 [(S R N R R AR

t !

4 SEND_)
— WINDOW_ATTRIBUTES [WATS
SOURCE
SERVER PROTOCOL
(XGCM) DISTRIBUTOR
———3 GWAT
GET_ GWATS
WINDOW_ATTRIBUTES
_ Y,
[
GET_)
> SHARE?{ WINDOW_ATTRIBUTES
XChangeWindowAtrributes EMOR PROTOCOL
? A MULTIPLEXER
SEND_ -
WINDOW_ATTRIBUTES
_ J
XCreateWindowReq g CREATE_ \
NEW_WINDOW o« WATS |
PROTOCOL
RECEIVER
GET_ —— GWATS |—
— WINDOW_STATE)

FIGURE 3.5 GET WINDOW ATTRIBUTES STATE INFORMATION DATA FLOW

ol

vt

t

SOURCE
SERVER

(XGCM)

r \

XChangeGCReq

XCreateGCReq

J

SEND_
—»| GRAPHICS_CONTEXT [—®1 GCS
PROTOCOL
DISTRIBUTOR
——3{ GGCS
GET_
GRAPHICS_CONTEXT
\ J
(
GET_)
SHARED GRAPHICS_CONTEXT
MEMORY
PROTOCOL
A A MULTIPLEXER
SEND_ -]
GRAPHICS_CONTEXT
\ J
4 GET_)
INITIAL_GC acs |
PROTOCOL
RECEIVER
GET_ GGCS |(e—
_K GC_STATE

FIGURE 3.6 GET GRAPHICS CONTEXT STATE INFORMATION DATA FLOW

[

o
4

"

bl

Qi

3.1.2.3 Protocol Distributor 1/0 Packet Structure

The Protocol Distributor (PD) I/O packet is a structure with the following
fields:

signal : Array of unsigned characters describing the I/0 request type
HDR : A structure consisting of the following fields:
- length : Integer containing the total length of the I/0
packet
- client : Integer containing the source client id
buffer : Array of unsigned characters containing the X protocol packet

The above structure can also be referenced as an array of unsigned
characters of the total combined length of the above listed fields.

3.1.3 Protocol Recejver

The Protocol Receiver (PR) is a separate task, responsible for routing X
protocol received from the Protocol Multiplexer (PM) to the local X server.
It does this by opening a standard connection to the local server with the
X_OpenDisplay routine. This routine returns a pointer to a Display
structure used to store information concerning this particular client and
server relationship (Figure 3.7). Included in this information is a buffer
which is used to hold X protocol requests from the client (in this case PR)
to the server. Periodically this buffer is ’'flushed’ or written to the
server. The server receives the request and acts upon them.

Another function of PR is to receive requests for state information from
other PD/PR pairs on remote workstations. For this function, PR maintains
a separate server connection. This connection is used to query the server
for such state information, or in the case of an expose event, to cause a

" local expose event from the X_SendEvent call (see Section 3.1.3.2, PR

Processing).
3.1.3.1 PR Initialization
Upon initialization, PR takes the following sequence of actions:

o Set up signal handling/catching routine for the SIGALRM signal.
This signal is used to implement I/0 timeouts.

o Open a connection, with the X OpenDisplay call, to the local X
server. This connection is used to retrieve state information
concerning various X resources when requested by a PR/PD pair on
a remote workstation.

o Attach to the shared memory segment which multicast has created.

27

} B Me e N U e T Dm0

(I T B i

!

%

gl e

N (1 1

rr

€T

'
i

€

-

READ YES

PIPE? >

NO

PROCESS NEW
CHANNEL MAP

A

YES

PROCESS X
PROTOCOL

FIGURE 3.7 PROTOCOL MULTIPLEXER DATA FLOW

i e I !NID OB D (DB NN

N B | m im el

C

T

o Make contact with the Central Distribution Manager (CDM), and the
PM. This is done by issuing an RPC broadcast to any existing CDM.
On the basis of this broadcast, the CDM assigns the PR a unique ID
number (the same as the local PD, see Section 3.1.2.1, PD
Initialization).

o The PR then connects to the PM by first creating a socket with
the socket system call, and then using the listen and accept
system calls to accept a connection by the PM. At this point the
PM has established a logical connection path to the PR. This path
is used to transmit X protocol from the PM to the target or
destination workstation.

3.1.3.2 PR Processing

The following paragraphs outline the processing performed by PR.

3.1.3.2.1 X Protocol Reception

Once initialization has taken place and the PM has established a network
connection to PR, PR will wait until it receives a communications packet
from PM. Appendix C contains a list of the types of communications packets
which are sent and received by PM, and also denotes the packets received by
PR.

When an X_DATA packet is received, the following processing occurs:

1) The protocol is first checked to determine if it 1is the first X
protocol packet from a client (indicated by a client number in the
communications packet, see Section 3.1.2.3, Protocol Distributor 1/0
Packet Structure). When an X protocol packet is received from a 'new’
client, PR creates a new connection to the local X server for this
client with the X_OpenDisplay system call. This connection will later
be used to transmit the X protocol to the server.

2) The X protocol packet is then decomposed to determine the type of X
request being made, such as X_ChangeGC or X_ClearArea. Each protocol
packet will be a request type indicating some action to be directed
regarding a resource (window, gc, pixmap, font etc. - see the X
Protocol Reference Manual 0 for details of resources). For example,
the X_ChangeGC request is used to change certain characteristics of a
particular GC, such as foreground or background color for drawing. As
well as containing the information for the foreground or background
color, the packet also contains the XID of the GC to be affected.

3) All XIDs contained in the protocol packet are exchanged, or mapped,
into XIDs which refer to local X resources. The XID contained in a
received X_ChangeGC, for example, refers to a resource which exists
only on the source workstation and has no meaning at the receiving

29

i

1
i

&l al

L[]

S

~ workstation. In the case of the X_ChangeGC request, PR performs the
following:

— o If the XID is a 'new’ XID, meaning this is the first X protocol
packet for the XID received by PR, then PR must create a resource
on the local workstation which is identical to that of the
resource on the source workstation. In the case of the X ChangeGC
request, PR must create a GC with the same characteristics as the
GC on the source station to which the XID refers. PR does this
— through a request for state information concerning the XID. When

= the state information is received, PR creates an identical GC with

the X _CreateGC call. The source XID and the newly created
o destination XID are then added to a linked 1list for future
= reference.

o 1f the XID is not 'new,’ then the XID is used to access the linked

list of source and destination XIDs to retrieve the corresponding

= destination XID. This XID is then substituted into the X protocol
packet.

The XID substitution is performed for all XIDs contained in the X
protocol packet. At this point the X protocol packet contains only
XIDs which refer to locally created resources. _

(0

4) The X protocol packet is then copied into the request buffer of the
associated client’'s Display structure. When this buffer is full, it is
sent (written to the Display structure's file descriptor) to the

- server. This is the same method used in standard Xlib functions.

3.1.3.2.2 State Information Transmission and Shared Memory Requests

The PR may receive requests, from PD/PR pairs on remote Stations, for state
information concerning local resources.

- 0 Get Window Attributes: The PR receives this request as a result

of a remote Station’s PD/PR pair requesting state information
concerning a particular window. The request contains the XID of
the window which refers to a resource on the receiving Station.
PR receives the request and retrieves the current window
attributes using the X _GetWindowAttributes call. PR then copies
the window attributes into shared memory and makes a Send Window
Attributes request of the local PD.

C1

o Get Graphics Context: The PR receives this request as a result
of a remote Station’s PD/PR pair requesting state information
concerning a particular graphics context, or gc. The request
contains the XID of the gc which refers to a resource on the
receiving Station. PR recelves the request and makes a Send
Graphics Context request of the local PD. The current graphics
context state information has been maintained by the multicast
routine (see Section 3.1.1, X Server Modification). After PR
makes this request of the PD, the PD retrieves the GC state

0

I

30

i

S

information from shared memory and sends it to the PM for ultimate
routing to the requestor station.

o xpose Event: A PR receives this request from a remote station’s
PR, who has received an Expose event from the local server. This
will result from initial creation of a Display Shared window, but
could also result from the user on the remote Station un-occluding
the window, or de-iconifying the window. In all cases, the PR
causes a local expose event by using the X_SendEvent call,
specifying to the client to redraw the entire window.

3.1.3.2.3 Local Expose Event Solicitation

The PR solicits only one type of XEvent from the local server: Expose
events. Periodically, PR checks for reception of this type of event. When
an Expose event is received, the PR makes a Send Expose Event request of
the local PD. The PD, in turn, sends this request to the PM for ultimate
routing back to the source Station.

3.1.3.3 Protocol Receiver 1/0 Packet Structure

See Section 3.1.2.3, Protocol Distributor I/0 Structure.

3.1.4 Local Distribution Manager

The Local Distribution Manager (LDM) provides a graphical user interface
into the Display Sharing system. The LDM may be called up by a selection
from the local window manager’'s menu. When selected, it presents the user
with the following options:

Retrieve TV Guide

Distribution Authorization Request
Reception Authorization Request
Cancel Distribution on Channel
Cancel Reception on Channel

Stop Central Distribution Manager
Quit

00 00O0O0O0

3.1.4.1 LDM Inictialization

Upon initialization, LDM takes the following sequence of actions:

o Contact the Central Distribution Manager (CDM) by issuing
an RPC broadcast and waiting for the response. The response
includes the host name where the CDM resides.

o Attach to the shared memory area created by multicast. This
allows access to the global variables and permits LDM to
set and clear the ’'wanted’ flags.

0 Create and display the user menu.

31

i | rm

{

{

[

i

t 1]

3.1.4.2 LDM Processing

The following paragraphs outline the processing performed by LDM.

3.1.4.2.1 Retrieve TV Guide

This option allows the user to request, from the CDM, the most current list
of channel’s and what is being distributed on each one. The LDM makes an
RPC request, CDM_GET_LIST, as provided in Appendix D and Appendix E, of the
CDM using the callrpc system call. The CDM responds to this request by
issuing a reply containing the current TV Guide. The current TV Guide is
a list of each channel, with the associated alpha-numeric identification

string.

3.1.4.2.2 Distribution Authorization Request

With this option, the user may make a local display available for reception
throughout the Display Sharing system. When this option is selected, the
following actions take place:

o The user is prompted to ’'pick’ the window for distribution by
moving the mouse cursor over the window to be distributed and
clicking the left mouse button. LDM will then determine the
window of the pointer and retrieve the XID for that window from

the local server.

o LDM places the XID of the window to be distributed into the shared
memory area.

o LDM prompts the user to enter an alpha-numeric identification for
the distributed window. This identification will be the entry in
the TV Guide for the channel on which this display is distributed.

o LDM makes an RPC request of the CDM, CDM_DIST_REQ, as provided in
Appendix D and Appendix F. This requests authorization to
distribute a particular display on a channel. The CDM's reply
returns the channel assigned for distribution.

o LDM sets the client and window id in shared memory, and then sets
a flag to indicate to the PD that a new client/window is ready for
distribution.

3.1.4.2.3 Reception Authorjzation Request

With this option, the user may elect to receive a display currently being
distributed on a channel. When this option is selected, LDM performs the
following actions:

o LDM requests from the CDM (using the CDM_GET_LIST RPC request) the
most recent copy of the TV Guide and displays the guide to the
user.

32

g

o

€|

'
1

|
il

t!

Ny

The user is prompted to select, using the mouse, one of the active
channels to be received.

LDM makes an RPC request of the CDM, CDM_RECV_REQ, as provided in
Appendix D and Appendix G. This request is for authorization to
receive a particular channel.

LDM takes no further action. The local PR will immediately begin receiving
X protocol for a 'new’ channel.

3.1.4.2.4 Cancel Distribution on Channel

When a user no longer wishes to make a display available to the Display
Sharing system, this option is selected. When this option is chosen, the
1DM takes the following actions:

o

Set the 'wanted’ flag for the particular client in shared memory
to FALSE, indicating to the local PD that this client’s protocol
should not be distributed.

The LDM makes an RPC request of the CDM using CDM_REMV_CHAN, as
provided in Appendix D and Appendix H. This request contains the
channel number on which to halt distribution.

3.1.4.2.5 Cancel Reception on Channel

When a user no longer wishes to receive a channel, this option is selected.
When this option is selected, the LDM takes the following actions:

o]

The LDM makes an RPC request of CDM using CDM_REMV_RECV, as
provided in Appendix D and Appendix I. This causes the CDM to
notify the PM to no longer distribute protocol to the local PR.

The LDM notifies the local PR, through flags in shared memory,
that no further protocol will be received for a particular
channel. The PR then closes the display connection and removes
the channel. :

3.1.4.2.6 Stop Central Distribution Manager

When this option is selected, LDM requests CDM to stop and remove itself.
The user should do this before selecting the 'quit’ option on LDM.

3.1.4.2.7 Quit

When this option is selected, LDM detaches from the shared memory area and
removes itself.

33

£

|

LKL

"
I [

(

3.2 Dedicated Display Sharing Host

To reduce the Display Sharing workstation burden from sending and receiving
shared displays, the concept of a dedicated Display Sharing host is
utilized. The dedicated host's primary responsibility is to receive and
retransmit X protocol between Display Sharing stations. Secondarily, the
host acts as a clearing house for transmit and receive authorizations.

Hosted on the dedicated host are two Display Sharing processes, as follows:

c The Central Distribution Manager (CDM) and the Protocol
Multiplexer (PM). The CDM is responsible for transmit and receive
authorizations, and the PM is responsible for receiving X protocol
from distributing stations and routing that protocol to receiving
stations.

The CDM and PM both access the same shared memory area, as provided in
Appendix B. The CDM uses a pipe between itself and PM to coordinate
changes to the shared memory area. For example, when CDM needs to change
the Channel Map (which is an expanded version of the TV Guide) it writes a
byte to the shared pipe. PM periodically checks this pipe for input. When
there is input, it pauses and lets CDM update the shared memory area and
then continues.

3.2.1 Central Disctrjbution Manager

The CDM may be thought of as the Display Sharing system’s coordinator.
Each PD/PR pair on each station must register with the CDM and must go
through the CDM to send and receive displays. The CDM's functions are as
follows:

o Distribution authorization
o Reception authorization
0 TV Guide maintenance

The CDM achieves these objectives by becoming the RPC service server (see
Appendix D for a description of the RPC requests that CDM processes).

3.2.1.1 CDM Injtialization
Upon start-up, the CDM performs the following sequence of actions:

o Create and initialize a shared memory area for use in
communication between the CDM and PM.

o Create a pipe for communication between CDM and PM.

o Spawn the Protocol Multiplexer (PM) task.

34

Pk T He IR (i Im3 UE me @ Lum (11 D1 | | BNl BTN | I

i
|

(1

!

i

g

v
i

tm

(

o Create a User Datagram Protocol (UDP) socket with the socket

system call.

o Register self as an RPC service (server) with the svc_register

system call.

o Enter RPC handling loop with the svc_run system call.

At this point, PM is awaiting connections from PD/PR pairs which register
The CDM is awaiting RPC requests from

themselves as they come 'on-line.’
each station.

3.2.1.2 CDM Processing

The CDM awaits RPC requests from outside the dedicated host (PD/PR pairs).
Below is a list of each type of RPC request:

CDM_GET_LIST:

This is a request from an LDM to send back the most recent TV Guide
listing. The CDM uses the svc_sendreply call to send back an alpha-numeric
string representing the current TV Guide listing.

CDM_REG_DIST:

This is a request from a PD to register itself as it comes 'on-line.’
Registering a Distributor (PD) consists of initializing data structures in
shared memory and assigning a Station id (which is used as an index into
the data structures). This information is passed onto the PM as well.

CDM_REG_RECV:

This is a request from a PR to register itself

CDM_DIST_REQ:

This request is sent by an LDM which requests

'on-line.’ Registering a
Receiver (PR) consists of initializing data structures in shared memory and
assigning a Station id (the same one assigned to the PR’'s local PD). This
information is passed onto the PM as well.

approval to begin

distributing a display on a channel selected by CDM. The prototype
implementation approves every distribution request, assuming that there is
an empty channel to assign. The CDM then determines the first empty
channel to assign, sets appropriate values in its data structures, and
returns the approval and channel number to the requesting LDM. The CDM
also notifies the PM of the change to the Channel Map.

CDM_RECV_REQ:

This request is sent by an LDM which requests approval to begin receiving

a display assoclated with the

requested

channel.

implementation approves every distribution request,

35

The prototype
assuming that the

TR

o

v
kil

E ey

maximum number of receivers per channel has not been reached. The CDM adds
the station index (the number returned to the PD/PR pair when they register
with the CDM) to the list of stations which are currently receiving a
particular display on the requested channel. The CDM also notifies the PM
of the change to the Channel Map.

CDM_REMV_CHAN:

This request is sent by an LDM which no longer wishes to distribute a
display on the indicated channel. The CDM marks the shared memory data
structures appropriately and notifies the PM that distribution on the
indicated channel is no longer valid.

CDM_REMV_RECV:

This request is sent by an LDM which no longer wishes to receive a display
from the indicated channel. The CDM removes the station from the list of
receivers for the channel and notifies the PM of the change to the Channel
Map.

CDM_PRESENT:

This request is used by both the PD and the PR as a broadcast request to
'find’ the CDM/PM pair. The request is made by the PD or PR using the
clnt_broadcast system call. The CDM responds by returning the hostname of
the machine on which it resides.

CDM_GO_AWAY:

This request is sent by LDM to CDM to tell it to stop.

3.2.2 Protocol Multiplexer

The Protocol Multiplexer (PM) may be thought of as the I/0 concentrator of
the Display Sharing system. It is responsible for reading all X protocol
from distributing Stations and then writing that protocol to all receiving
Stations. The PM also processes all state information requests and
transmittals.

The PM receives processing directions from the CDM from a shared memory
area and two Unix pipes. The shared memory area (see Appendix B) 1is used
to store the Channel Map and Station data structures (see Appendix J).
These data structures contain information concerning each distributor,
receiver, and Station in the Display Sharing system. These structures
provide the CDM and PM the means to process X protocol. The Unix pipes are
used to synchronize changes in the shared memory area between CDM and PM in
leu of a semaphore.

36

i
H

(!

¢

"

E

i

{

The PM is spawned by the CDM with the following parameters:
cdm_read fd; an integer (file descriptor) used to read information
written to the pipe which the CDM wuses to send
information to the PM.

cdm_write_fd; an integer (file descriptor) used to write information
to the pipe which the CDM monitors.

shmid; an integer containing the identification number of the
shared memory area used between the CDM and PM.

3.2.2.1 PM Injtialization

Upon initialization, PM performs the following sequence of tasks:

o Set up signal catching/handling routine for SIGALRM to implement
and handle timeouts.

o Attach to the shared memory segment which CDM has created.

o Creates a socket with the socket() system call to use in accepting
the first connection by the first PD/PR pair.

o Use the bind() system call to associate the socket just created
with the PM's network address.

o Register intent to list and accept connections by using the
listen() system call.

o Write port number to the CDM for later use.
o) Use the accept() system call to await the first connection by a
PD/PR pair who are 'registering.’ Subsequent connections by PD/PR

pairs are performed upon notification by the CDM using one of the
Unix pipes.

3.2.2.2 PM Processing
The PM has two primary responsibilities during processing, as follows:

o Connecting to or accepting connections from PD/PR pairs, and
o Dispatching X protocol from distributors to recelvers, as shown in
Figure 3.7.

3.2.2.2.1 New Connections

The CDM may signal to the PM that a PD or PR requests a connection, for the
purposes of transmitting or receiving X protocol. The signal occurs by
setting a flag in shared memory. This flag indicates that the PM should
pause from normal processing and read the pipe for information. While the

37

g

' rmn i

”H
i
.

PM is paused and awaiting notification on the pipe, the CDM updates shared
memory with new values and then notifies the PM that shared memory has been

updated.

The PM then determines the purpose of the interruption by examining several
flags in the newly updated shared memory area. If the request is to
connect to a PD, then the PM makes an accept() system call to complete the
connection (passive connection). If it is a request from a PR, then the PM
makes a socket() and connect() system call to complete the connection
(active connection).

Regardless of the type of connection (active or passive), identifying data
concerning each connected Station is placed into shared memory for use by
both the CDM and PM. This information is used, for instance, to determine
the source Station when a receiving Station has requested an Expose event.

3.2.2.2.2 Protocol Dispatching

The PM performs processing in three distinct areas while dispatching X
protocol:

o Distributors Processing
o Receivers Processing
o State Information Processing

Distributors Processing: The PM is notified of a new distributor by a
change in the Channel Map (made by the CDM after a CDM_DIST_AUTH request).
In its processing the PM goes through the Channel Map. For each channel
that is active, the Channel Map will contain a valid file descriptor {(which
results from a connection to the PD and is a virtual circuit between the
distributing PD and the PM). If the channel is active (the Channel Map
contains a valid file descriptor), the PM will attempt to read data from
the file descriptor (see Appendix B). If data is available, it is handled
according to the type of data it is.

Receivers Processing: When X_DATA is received on a channel, the Channel
Map is checked to see if there are any recelvers (PRs) for that channel.
For every valid PR receiving the channel, the Channel Map will contain a
valid file descriptor. This results from a connection to the PR and is a
virtual circuit between the PM and the receiving PR. As X protocol is
received, the PM goes through the list of receiving PRs and writes the data
to each file descriptor.

State Information Processing: The PM is also a clearing house for state
information requests and data (see Section 3.1.2.2, PD Processing). For
example, when a Station requires state information concerning a graphics
context (GC), the Station’'s PD sends the get_graphics_context_structure
request (GGCS) to the PM. The PM receives the request and consults the
Channel Map to determine to which Station (PR) to propagate the request.
The PM then passes the request to the PR on that station. That Station

38

i

-
.

c

|
i

o

"

|t

i
i

g

will then send out the requested state information (in this case the
contents of the graphics context). The PM receives this information and
routes it back to the requesting Station.

3.2.2.3 Performance and Redundancy

The current implementation of the Display Sharing prototype contains only
one Protocol Multiplexer. One 1i{s an adequate number for prototype
purposes, but there will certainly be an upper limit on the number of
channels which a PM may handle before performance degradation occurs.
Factors such as the frequency of update for each channel, and the average
size of each X protocol packet for each channel will determine a practical
maximum number of channels per PM. If that number is less than the maximum
number of channels desired, modifications to the current prototype will
allow multiple Protocol Multiplexers to reside on separate computers.

39

r !

e

vl

s

o

1N

4.0 USING THE DISPLAY SHARING PROTOTYPE IN MOSL

Setting up and running the Display Sharing prototype in the Mission
Operations Support Lab (MOSL) requires that the steps specified below be
followed in their presented order. The user of the Display Sharing
prototype is assumed to have basic knowledge of the Unix operating system,

Some Unix script files and aliases have been defined on the systems
mentioned below. If other systems are used where these definitions do not
exist, the equivalent commands have been included here, usually in
parenthesis after the script file or alias name. For a complete listing of
aliases and script files, see Appendix Q.

In the paragraphs below, "graphics head” refers to the physical display
and keyboard of the specified server (indicated by the number after the
colon in the name). "Jindow” refers to a window created by a login
(rlogin) to a remote server from the local server.

Commands to be typed in by the user are in bold typeface.

4.1 Equipment

To run the Display Sharing prototype, the following hardware is needed:

o Source workstation
o Receiver workstation
0 Dedicated host workstation

In the MOSL, Newton:l was used as the source workstation, Triton:0 (or
Triton:1) as the receiver workstation and Stegy as the dedicated host. All
workstations are Masscomp 6600 systems. In the remainder of this chapter,
the server number will be omitted from the workstation names, unless it is
required for clarity.

Note that the receiving station’s display is also used to access the other
two servers through remote login windows.

4.2 Setup

To start a Display Sharing session, begin by logging in on the Triton
graphics head as user:root and type:

DS (or cd /user/DS)
dsproto

Wait for the following three windows to be placed on the screen:
Left window : source window (Newton)

Upper right window : receiver window (Triton)
Lower right window : dedicated host window (Stegy)

40

||

[

I i

A

Wown

)

|

ll! kL
PR

o

[

t\ ‘e
i L

¢

At the prompt, enter root password in the left window (Newton/source) and
i{n the lower right window (Stegy/dedicated host).

In the absence of the dsproto script file, three xterm windows can be
created and placed on the Triton screen manually. In one of the three
windows rlogin to Newton, in another to Stegy. Leave the last one as an
xterm window to Triton. The Figure 4.1 shows the approximate window layout
as created by the dsproto script file.

Newton<root>:
Triton<root>:
(destination window)
Stegy<user>:
(source window) (dedicated host window)

FIGURE 4.1 Display Sharing Window Layout

While working on the Triton graphics head, type the following commands
-in the left window (Newton/source):

me (or cd fuser/DS/mc)
setenv DISPLAY local:1l.0

- in uPper right window (Triton/receiver):

me (or cd fuser/DS/mc)

setenv DISPLAY local:1.0 (if using Triton:1l graphics head)
9R
setenv DISPLAY local:0.0 (1f using Triton:0 graphics head)
4.2.1 Removal of Ford Varjant Server

NOTE: Do this ONLY if a Ford Variant server is currently running on the
Newton (source) graphics head. If this step is needed, it must be done
once a session, even if the Display Sharing prototype is stopped and
restarted.

41

To replace the Ford Variant X file with a version of X that is compatible
with Display Sharing, on the Triton graphics head, in the left window
(Newton/source) type:

dsserv
— OR
cd /etc/mcgraphics/X1ll
cp geml2.ds geml2
mc (or c¢d /user/DS/mc)

If this step is done, be sure to restore the Ford Variant server (see
Section 4.10) before ending the Display Sharing session.

When the Display Sharing modified server is compatible with the Ford
Variant Server, this step will not have to be done.

4.3 Process and Shared Memory Cleanup
‘. In order for the Display Sharing prototype to run correctly, all shared
- memory, semaphores, and processes created by a previous Display Sharing

session must be removed first.

- On the Triton graphics head, in all three windows, check that no shared ~
memory or semaphores are left over from a previous Display Sharing run by
= typing in the command:

ipcs

gé This will give a list of shared memory and semaphores currently being used.
If any shared memory with Oxfb or Oxfa in the key field remains, remove it

T with:

ipcrm -m <id#> (replace <id#> with the actual number in the
: id field)
= If any semaphores with a zero key field remain, remove them with:
£= ipcrm -s <id#> (replace <id#> with the actual number in the
= id field)

To list processes running on each server, type

ps -ed
§§ The actual option letters may vary on different systems. To remove a
= process, use
= kill <pid#> (or kill -9 <pid#>)
= where <pid#> is the process id of the process to be removed.

¢

F‘ Py
!
e L

On the Triton graphics head, in the left window (Newton/source) remove any
of the following processes still running on Newton:

o

C 0 Q0 0O

Xgem :1 or XGCM :1 (the number after the colon is the same as the

server number)
../sim/cmap_newton
../sim/sc

pd

Pr

ldmg

~

On the Triton graphics head, in the upper right window (Triton/receiver)
remove any of the following processes still running on Triton:

0 0 0 O

pd
pr
ldmg
dummy

If more than one copy of each of the following processes is running, leave
one running and remove the rest of them:

(o]
o

../sim/cmap_triton
../sim/sc

When shutting down the Display Sharing session, remove all copies of the
above processes.

Verify that all shared memory, semaphores and above mentioned processes
are removed after each Display Sharing prototype run.

4.4 Startup

To start a Display Sharing prototype run begin by starting the dedicated
On the Triton graphics head, in the lower right window

host.

(Stegy/dedicated host) type:

Next start the source server.
window (Newton/source) type:

DShost (or cd /user/DS/host)

cdm

start_source

On the Triton graphics head, in the left

43

(! (!l

l! e e
IS

R

i

Go to the Newton graphics head and do the following:

o Log in

o Wait for LDM (Local Distribution Manager) menu-corner to appear
and place it anywhere on the screen by clicking the left mouse
button

o Start an application for Display Sharing (see Section 4.9)

Finally, start the receiver. On the Triton graphics head, in the upper
right window type:

start_dest

Wait for the LDM menu-corner to appear and place it anywhere on the screen
by clicking the left mouse button.

NOTE: All menu items and windows are selected by moving the mouse to place
the cursor over the selected key or area, and then clicking the left mouse
button. The sub-menus and received windows are placed by positioning the
flashing corner with the mouse and clicking the left mouse button to drop
the menu or window in place.

4.5 Distributing a Window

To make a window on the source station available to the receiver(s), do the
following on the Newton graphics head:

Select "Distribution Authorization Request” from the LDM menu
Select window to be distributed

Select "ok” in the LDM menu, if the selected window was correct
Type an ASCII character string in the small sub-menu window to
identify the display to be distributed

o 0 0 O

Multiple clients (applications) can be distributed by repeating the above
process for each client.

4.6 Receiving a Window

To receive a window currently being distributed by a source station, do the
following on the Triton graphics head:

Select "Reception Authorization Request” from the LDM menu

Place the new sub-menu window if the menu-corner appears

Select the channel to receive from the sub-menu

Select "Finished” in the sub-menu to make the sub-menu disappear

o 00O

To receive more than one window, continue to select other available
channels from the sub-menu before removing the sub-menu.

44

(ﬂ“

/1600 A SOSAR MSDARR M

4.7 shutdown of Display Sharing

To perform an orderly shutdown of the Display Sharing prototype at the end
of a run or session, do the following in the order indicated below:

On the Triton graphics head, in the LDM menu do the following:

o Select "Cancel Reception on Channel”
o Select each channel being received in the sub-menu
o Select "Finished” in the sub-menu to make the sub-menu disappear

Next on the Newton graphics head, in the LDM menu do the following:

Select "Cancel Distribution on Channel”

Select all channels being distributed in the sub-menu

Select "Finished” in the sub-menu to make the sub-menu disappear
Select ”"Stop Central Distribution Manager”

Select "Quit”

o0 0 0o

And on the Triton graphics head, in the LDM menu do the following:

o Select "Stop Central Distribution Manager”
o Select "Quit”

Finally, perform all steps in section 4.3 (process and shared memory
cleanup) to remove any remaining shared memory, semaphores or processes
left after the previous run. This step is especially important if the
shutdown could not be performed in the orderly manner described above.

4.8 Restarting Display Sharing

To start another run of the Display Sharing prototype, continue from
section 4.4 (Startup).

If any of the three windows on the Triton graphics head have been removed,
remove all remaining rlogin windows, and continue from section 4.2 (Setup).
However, skip section 4.2.1 (Removal of Ford Variant Server).

4.9 gStarting an Application

Most applications can be used for Display Sharing. Some sample
applications exist in the following directories:

/user/DS/sim:
bar_c (color bar chart)
ple_c (color pie chart)
bar (black and white bar chart)
alpha (display with alphabetic character parameters. Number

and length of parameters and update rate of display can
be selected from command line. For help type:
alpha -h)

45

-

(e

l p—
ki

[R

"

Juser/DS/nasadisp:

displ (standard text display generated by NASA)
disp2 (standard graphics display generated by NASA)

To run one of the above applications, on the Newton (source) graphics head,
do the following:

For applications in the /user/DS/sim directory type:

sim (or c¢d /user/DS/sim)
<name of application program>

For applications in the /user/DS/nasadisp directory type:

nassa (or c¢d /user/DS/nasadisp)
<name of application program>

When cleaning up processes from a Display Sharing runm, make sure that any
applications that have been started are also terminated. Remove any
processes not terminated at the end of a run.

4.10 Finishing Display Sharing Session

After finishing a Display Sharing session in the MOSL, the Ford Variant
server must be restored if it had been removed when staring the session.
The server is restored on Newton by typing the following commands at the
Triton graphics head, in the left window (Newton/source):

fvserv <server #> (replace <server #> with the actual
server number)

OR
cd /etc/mcgraphics/X11
cp geml2.fv geml2
Xgem :<server #> & (for Newton:1l this is Xgem :1 &)

This should cause a server to start up on the Newton graphics head. If

not, verify that any server running on Newton had first been removed. Now
all the windows can be closed by logging out of each window.

46

tiho

r

oy

[m weor ll T
ot [N

lwr m

e

C

5.0 DISPLAY SHARING SOFTWARE DESCRIPTION

The Display Sharing prototype software was designed to be modular. The
communication routines and some of the common utility functions are shared
by several of the functional modules.

5.1 Source and Destination Station Software

The source and destination station software is the same, the only exception
being the server module in a receive-only station. In the example Display
Sharing session in Chapter 4, one server (the destination) 1is left
unmodified and therefore configured as a receive-only server. The modified
server can act both as a source and a destination.

5.1.1 Servex

The two versions of the server module use essentially the same software
files. Options in the make-file determine which type of server is being
compiled. For listings on the server files, see Appendix K.

5.1.1.1 Modified Server Version

In the modified server version, the following files are compiled and linked ~
in with the partially linked X server object to form the executable
modified server:

o multicast.c : server modification routine called by X server
for every protocol packet received
o multix.c : X window related utility routines for the

server modification

5.1.1.2 Pseudo Modifijed Server Version

On a receive-only station, the X server can be left unmodified. A pseudo
modified server is started as a process running on the unmodified server.
The pseudo modified server is used only at startup to create and initialize
shared memory for communication between the PR, PD and LDM.

The Pseudo Modified Server consists of the following files:

o multicast.c : routine called by pseudo modified server to
create shared memory for PR/PD/LDM
communication

o multix.c : X window related utility routines for the
pseudo modified server

o dummy . c A : pseudo modified server routine that calls

multicast once

An option when compiling the pseudo modified server causes multicast.c to
return right after creating the shared memory. For compatibility with the

47

!

1§

(!

{lH

SO 1

(

e

et

0

modified server, the routines multicast.c and multix.c are exactly the same

in both versions of the server.

5.1.2 Protocol Distributor (PD)

The Protocol Distributor consists of the following files:

o pd.c : main PD routine
- initialization
- main loop:
check protocol buffer
if protocol to send then
distribute protocol
rotate buffer

endif
o pdio.c : PD I/0 related routines
o pdutil.c : PD utility routines
o alarm.c : set and clear alarm
o mutil.c : utility subroutines used by local and central
management functions
o netwrite.c : network write routine

For listings on these files, see Appendix L. Files alarm.c, mutil.c and_

netwrite.c are shared by other modules.

5.1.3 Protocol Receiver (PR)

The Protocol Receiver consists of the following files:

o pr.c : main PR routine
- initialization
- main loop:
wait for protocol
translate protocol
send protocol to server

o prinit.c : PR initialization routines

0 prio.c : PR I/0 related routines

o prproto.c : PR Protocol handling routines

o prutil.c : PR general utility routines

o alarm.c : set and clear alarm

o mutil.c : utility subroutines used by local and central
management functions

o netread.c : network read routine

For listings on these files, see Appendix M. Files alarm.c,
netread.c are shared by other modules.

48

mutil.c and

I

==
=

]
Ey
[—

CIT

5.1.4 Local Distribution Manager (LDM)

The Local Distribution Manager consists of the following file:
o ldmg.c : LDM (graphics) routines

For a listing of this file, see Appendix N.

5.2 Dedicated Host Software

The dedicated host consists of a Central Distribution Manager (CDM) and a
Protocol Multiplexer (PM). After creating the PM, CDM loops waiting for
RPC requests. PM receives all protocol to be distributed and sends it to
each station receiving on the channel that the protocol 1is being

distributed on.

5.2.1 Central Distribution Manager (CDM)

The Central Distribution Manager consists of the following files:

o cdm.c : main CDM routine
- initialization
- create PM
- main loop:
handle incoming RPC calls
o cdm_rpe.c : CDM RPC request handling code
o mutil.c : utility subroutines used by local and central
management functions

For listings on these files, see Appendix 0. File mutil.c is shared by
other modules.

5.2.2 Protocol Multiplexex (PM)

_ The Protocol Multiplexer consists of the following files:

o pm.cC : main PM routine
- initialization
- main loop:
channel map update
check for protocol to distribute

o prio.c : PM I/0 related routines
o pmutil.c : PM utility routines

o alarm.c : set and clear alarm

o netwrite.c : network write routine

o netread.c : network read routine

For listings on these files, see Appendix P. Files alarm.c, netread.c and
netwrite.c are shared by other modules.

49

'

l

T

(!

(e o

cr

i

aumn

.6.0 DISPLAY SHARING RESEARCH TOOLS

6.1 Protocol Profiler

A program called profile was developed to enable monitoring of X protocol
requests generated by X-clients. An array in shared memory is used for
each client to store the following data:

o The number of times each request has occurred, and
o The number of request bytes transmitted from that client.

The byte count used to calculate throughput includes Display Sharing
overhead bytes but does not account for any other overhead added by the
network.

Throughput, and a breakdown of requests for each client, are displayed once
a minute or by user demand. The byte counts are accumulated in two ways:

o Over the time since the last printout (one minute or less), and
o Over the total time elapsed since the array was last cleared by
the user.

The user can display the contents of the array at any time. Displaying -
whether by user demand or initiated by the program - will not change any
of the request counts. It will clear the contents of the one minute timer
and the byte count accumulated since the previous display. The running
total byte count is not affected. The user can request to clear the whole
array, which in addition to clearing the request counts and byte counts,
also clears both the one minute timer and the running timer.

There are two versions of the profile program enabling it to be used in two
different ways:

o Stand Alone Version: to profile requests generated by a client in
a Non-Display Sharing environment

o Display Sharing Version: to profile requests generated by a client
while it is running in a Display Sharing environment

6.2 Stand Alone Version

This version runs on a server that has been modified specifically for this
purpose. Any X client(s) running on this server will be monitored, and the
requests they generate are displayed by the profiler which is also running
on this server. Display Sharing overhead bytes are included in the
throughput byte count.

6.3 Display Sharing Version

To monitor requests and actual throughput generated by clients during
Display Sharing, the profiler monitors the shared memory area updated by

50

'!
i

(|

i

[

|

g

the regular modified server used for Display Sharing. In additionm to being
able to see X requests generated during normal operation, as in the stand-
alone version, requests generated by receiver’s expose events are also

monitored.

Throughput measured with this version will reflect a possible slowdown
compared with the throughput measured with the stand alone version, if the
Display Sharing prototype slows down the server.

51

[

=

(

7.0 PROTOTYPE EVALUATION

7.1 Workstation Performance

Two different approaches to Display Sharing were evaluated, the Modified
Server Approach, and the Display Sharing Wedge Approach (see below).

To compare the performance of the two approaches, a test routine was
developed. This evaluation program runs as a client on the workstation.
The program sends repeated X requests, which require a response, to the
server. It measures the time beginning when a request is sent by the
client, and ending when the response 1is received from the server
(round-trip-time).

The X_Sync request was selected as the X request to be sent, because it
only causes the server to return a response. The client waits until a
response 1is received before sending the next request.

Typically the client buffers several X requests, and sends them all at one
time to the server. The X_Sync request is never buffered waiting for
additional requests. It causes the request buffer to be flushed (sent to
the server) immediately. This enables the timing of individual requests.
In the evaluation program 50,000 such X_Sync requests were sent to the X
window server and the elapsed time was measured and the average round-trip
time computed.

The evaluation test was run on an RTU/Unix 4 system. The workstation was
a Concurrent 6600 system with two 33 MHz CPU’'s. All tasks were operating
at normal priority and the standard mix of Unix processes were running.

7.1.1 Modified X Sexrver Approach

In the Modified X Server Approach the Source Station uses a custom enhanced
X window server (see Section 3.1.1), to which the client connects in the
normal manner. A modified X window server is only needed on a Source
Station, while a receive-only station uses either an unmodified server or
the modified server.

The Modified X Server Approach incurs a minimal performance penalty
compared to a non-modified server. The additional time is spent in calling
the multicast routine (see Section 3.1.1) once for every protocol request.
This routine determines whether the request is to be distributed, and if
it is, copies the request into a buffer in the shared memory area before
returning. No additional processing is performed to non-distributable
requests by the Display Sharing software.

Using the above mentioned program to evaluate the workstation performance
in the Modified X Server Approach, the average round-trip time per request
between the client and the X server was found to be 11 milliseconds (0.011
seconds) .

52

(.

6T

o

(e

7.1.2 Display Sharing Wedge Approach

The Display Sharing Wedge Approach uses a non-modified X window server.
Instead, a program 'layer,’ here called Wedge, is inserted between the
client and the server. The client connects to Wedge the same way it would
to a regular X window server. All of the Display Sharing software used
with Wedge is identical to that in the Modified X Server Approach.

In the Display Sharing Wedge Approach, the Wedge program reads every
request sent by the source client and then calls the multicast routine.
Then Wedge writes the request out to the server. The responses from the
server are read by Wedge, and then written to the client.

The Wedge is transparent to both the source client and the server because
it appears to the client as a server, and to the server as a regular
client.

Compared to the Modified Server Approach, Wedge must perform an extra
network write for every request that the client sends to the server, as
well as for every response that the server sends back to the client. 1In
addition to the extra processing done by Wedge, it itself is a process
running under Unix and taking up system time.

Using the above mentioned program to evaluate the workstation performance-
in the Display Sharing Wedge Approach, the average round-trip time per
request between the client and the server was found to be 60 milliseconds
(0.06 seconds).

Based on the above results, it can be determined that using the Display
Sharing Wedge Approach is approximately 5.5 times slower than the Modified
X Server Approach.

7.2 Network Performance

The following section describes the calculated amount of data sent on the
local area network (LAN) for the configuration as follows:

50 workstations,

250 parameters per display,

10 characters per parameter,

Entire display updated every 2 seconds.

o 0 0 O

The parameters can best be displayed with the ImageText8 X request (see X
Protocol Reference Manual 0). For this particular request, X Windows
protocol adds 16 bytes of overhead to each parameter text string. An
additional 0-3 bytes of padding is added to make the parameter byte length
evenly divisible by 4. In the case of a 10 character parameter (one
character per byte), 2 bytes of pad will be added.

53

A R A (e e

(30N

v

i

The Display Sharing protocol adds 12 bytes of overhead to any X request,
The total length of each packet containing one parameter is 40 bytes
(16+10+2+12). Note that these and all byte counts calculated below are
Transmission Control Protocol/Internet Protocol (TCP/IP) data byte counts,
and do not account for bytes that will be added by Open Systems
Interconnection (0SI) overhead when using Transport Protocol, class &
(TP4).

With 250 parameters per display, the total number of bytes needed to update
one screen is 250%40=10,000 bytes. If the screen is updated every 2
seconds, the network traffic between the source station and the dedicated
host will be 5,000 bytes per second (Bps) or 40,000 bits per second (bps)
at 8 bits/byte.

The same amount of traffic (5,000 bytes per second) will be added for every
destination station receiving this display. So, in the case of 1 source
station and 49 receiver stations, the total traffic is 50*5,000 = 250,000
Bps. The traffic would be the same if out of the 50 stations some were
distributing and the rest were each receiving any one display.

Note that the above estimates require that the workstations, the LAN and
the software can keep up with the necessary speed. In the above example
the multicast routine in the Display Sharing software must be able to load _
the shared memory buffers at the rate of at least 5,000 Bps, and PD must be
able to unload the buffers and send the data to the PM at the same rate of

speed.

For the sample X window graphics display provided by NASA, the above
calculations give the following results.

Each of the six sine-waves was drawn with

2 PolySeg(8) requests, and
1 PolySeg(4) request.

The number in the parenthesis indicates how many segments are drawn by each
request. The number of segments that the PolySeg request draws determines
the byte count of the request. Each segment adds 8 bytes to the basic 12
bytes of X overhead for this request. Display Sharing overhead adds 12
bytes per request for a total of 232 bytes for one pass of a sine-wave.
Six sine-waves per display updated every 2 seconds, gives a LAN traffic of
(232%6)/2 = 696 Bps. For 50 workstations the total traffic amounts to
34,800 Bps (assuming every station is distributing or receiving only one
display).

The above method can be used to calculate the traffic generated by any size
or type of display, by profiling the X requests that were used to generate
them. Since the network traffic is based on the types and numbers of X
requests generated by the clients, the applications can be coded in a way
that most effectively reduces the LAN traffic.

54

[

P

I‘-wu

tmt

K
1

(!

1l

Note that the above numbers are based on a stabilized system. The traffic
varies from the above rates during receiver station start-up, when state
{nformation is being sent to the receiver(s) before the data can be
displayed.

The actual traffic measured on the LAN depends on the ability of the
software to keep up with the required speed. One area where speed and task
scheduling is critical, is at the source station when the Protocol
Distributor (PD) empties the protocol buffers in shared memory and sends
them to PM (see Section 3.1.2.2). If PD is emptying the buffers slower
than the multicast routine is filling them, the server may get delayed
while waiting for an empty buffer to become available and this would cause
the whole system to slow down.

Another critical area is at the receiver station where the Protocol
Receiver (PR) sends the packets it has received to the server. Sending
requests individually to the server without buffering will cause the system

to slow down.

55

e

o

t

8.0 OUTSTANDING ISSUES

With the completion of the Display Sharing prototype, there are still some
outstanding issues that must be resolved before a production system is
implemented. Most of these issues are technical in nature; however, some
require policy decisions at NASA.

8.1 Colormaps

In the Display Sharing prototype colors are passed from distributor to
receiver by referencing an integer index into the colormap array at X
Protocol level. This method can only reproduce original colors if the
colormap is identical on all systems, both with respect to the color as
well as to its index in the colormap. To insure this, one solution is to
establish a standard colormap on all systems.

Another possible solution is to send the RGB value for each new color used.
The RGB values will be requested from the source client, much in the same
way as window attributes and graphics contexts are now being requested.
The RGB value will then be parsed at the receiver to create a new entry in
the local colormap. Parsing the color will create the closest matching
color available on the receiving system. It will not necessarily be the
identical color if the number of bit planes on the receiver were fewer than "~
on the source. Additional processing will be required at the receiver
every time a color is referenced to translate the remote index to the local
one.

8.2 [Fonts

The handling of different fonts is not implemented in the Display Sharing
prototype. The issue of fonts is similar to the issue of colormaps, except
that a font cannot be parsed by the receiver if it does not already exist,
All systems need to agree on a standard set of fonts to be used by Display
Sharing applications.

A default font of the correct size could be assigned if an exact matching
font is not required.

8.3 Expose Events

Expose events are sent to applications to inform them that a portion of the
window or all of the window needs to be regenerated. The application
itself is responsible for redrawing the information in the exposed area.
To simplify the problem of redrawing only the exact part that was exposed,
many applications redraw the entire window when any part is exposed.
Expose events are especially important to redraw static data, such as
labels, which do not get updated after they are drawn, or data that is only
updated very seldom.

In the Display Sharing prototype the receiver causes an expose event on the
source station when a new window is created. The source then sends all the

56

i

(NI

Gl

protocol necessary to draw the initial state of the window. The
application must handle expose events correctly in order for the received
window to be identical to the source window.

8.4 Dela til] Appeara

Although the window is being distributed and that channel is requested for
reception, a window will not appear at the receiver station until protocol
has been detected from that window. In a situation where a client is only
updated once every ten minutes, it may take up to ten minutes before the
window appears at the receiver. A window that is never updated, will not
appear at the receiver unless an expose event is caused at the source
station forcing it to redraw the window.

A solution would be to make the receiver cause an expose event at the
source as soon as a channel is requested for reception. This would prevent
long delays before a rarely updated window appears.

8.5 Multiple Windows Per Client

To keep the amount of data to be distributed at reasonable levels, only
windows that are currently being mapped should be sent. Child windows
could include pop-up windows and pull-down menus, which probably should not
be distributed.

8.6 Using the Display Sharing Wedge Approach

Use of the Display Sharing Wedge between the client and the server, instead
of the modified server has some limits. The Wedge has a definite
performance limit (see Section 7.1.2).

Other limiting factors of the Wedge approach include that clients must be
started differently in order to be distributed. A client must be
specifically attached to the Wedge when it is started. If it is not, it
cannot be distributed without stopping and restarting it. Conversely, if
a client is attached to Wedge when it is started, it cannot be unattached
without being stopped.

The current version of Wedge is simply a stripped version of Xscope from
the R4 MIT release. Some improvement in performance may be realized by
writing a version of Wedge specifically optimized for Display Sharing.

8.7 Shared Memory and Semaphores

The Display Sharing prototype uses 24 semaphores and less than 32K bytes of
shared memory. This must be accounted for when running the prototype to
allow enough shared memory and semaphores for Display Sharing. The number
of semaphores and the amount of shared memory can be set in the system
configuration file.

57

NI

8.8 Optimized X Code

The Display Sharing prototype’s performance 1is directly affected by the
efficiency of the clients that are being shared. To reduce network
traffic, the number of X-Events, protocol packets and the number of
round-trip requests should be kept to a minimum. This can be affected by
the way the clients are designed.

Widgets enable creating clients simpler and faster, but they also reduce
the efficiency of the client. Especially in cases where the standard X1lib
libraries would be sufficient to create the client, using widgets would
negatively affect the performance.

Xgks is a version of gks (Graphics Kernel System) which operates under the
X environment. Xgks primitives are converted into X requests that are
handled by the X server. Depending on the gks call, a word may be sent as
separate characters instead of as a single word. Using Xgks instead of
X1ib calls decreases the efficiency of the client. '

8.9 Discontinued Distribution of Window

When the source removes a client from distribution, the receiver gets no
indication of this, other than that the window is no longer being updated.
Other ways of handling this could be to inform the receiver that the window "~
is now static by changing its border.

8.10 Redundant Dedicated Hosts

Currently the Display Sharing system assumes only one dedicated host. The
prototype can be modified to accept multiple dedicated hosts. If one host
fails the Display Sharing System will try to compensate for it by using one
of the other hosts. The LDM would show the combined channel guide from all
hosts, and it would be transparent to the user which machine hosts any one
channel. The number of redundant dedicated hosts can be set after the
confidence level for the system is established.

8.11 Multiple Window Id's Over the Network

Currently the Display Sharing prototype does not handle the fact that
window id’'s are not unique over several workstations. If two windows with
identical window id’'s are being distributed from different workstations,
and both are being received by the a third workstation, the receiver cannot
be able to correctly attribute the incoming X-protocol to the correct
window.

To solve this, additional information such as unique station 1id's, needs
to be stored along with the window id’s. Since all window id’'s on a single
workstation are unique, the combination of a window id and a station id
would insure that duplicate id's over a network do not exist.

58

v’w v
L

M

8.12 geml2 File

The /etc/mcgraphics/X11/geml2 file must be compatible with the version of
the modified server being used. The current modified server is compatible
with the latest official release from MassComp, which is incompatible with
the Ford Variant version. If the gcml2 file is incompatible with the
modified server being used, it must be replaced by a compatible geml2 file
(see Section 4.2.1).

59

Bl

o

APPENDIX A

WORKSTATION LOCAL SHARED MEMORY

The Local Shared Memory structure shared between the server, PD, PR
and LDM has the following fields:

semaphore:

An integer used to control access to shared memory area where protocol
buffers used to pass data from the server to PD are stored. The semaphore
is set and read by the server and by PD.

buf stat[]:

An array of integers, indicating the state of each buffer which has one
of the following values:

- MULTICAST : Set by multicast indicating that the buffer
contains protocol to be distributed
- SM_EMPTY : Set by PD indicating that the buffer is currently
empty
sm_status:

Integer set by LDM and used by PR, PD and multicast to indicate the
status of the shared memory.

- SM_EMPTY : initialization value
- DIE : 1DM has been requested to quit

start:

An integer used by LDM to indicate to multicast that it has authorized
distribution on a new channel.

pd_alive:

Integer set by PD indicating when PD is alive and running.
pd_pid:

Integer set by PD containing the process id of the PD.
pr_iniﬁ:

Integer set by PR indicating when PR is initialized.
pd_init:

Integer set by PD indicating when PD is initialized.

A -1

pm_port:

Unsigned short set by PR and LDM containing PM port number of the host
where CDM was found.

pr_port:

Unsigned short set by PR containing PR port number.
distributor_id:

Integer set by PD containing the id number for the distributor.
pd_propagate_expose:

Integer set by PR indicating that PR has requested PD to send expose
event to client,

expose_client:

XID set by PR indicating the window for PD to send the expose event
back to

default_gc:

XID set by PR indicating the id of the source display’s default graphics
context.

root:

XID set by PR indicating the id of the source display’s root.

wanted[}:

Array of integers indexed by client, set and used by multicast
indicating if that client is to be distributed.

get_wvat:

Integérrﬁet by PR 1nd1catihg that PR wants PD to retrieve window
attributes from the source by sending a request to PM,

send_wat:

Integer set by PR indicating that PR is requesting PD to send window
attributes requested by PM.

wat_channel:

Integer set by PR indicating the channel for which PR is requesting PD
to send the window attributes.

BI ® W i

"
|

wiil |

gl

A

L IH

i

O

il
\‘l

WE Wi

L (

i

wat_bg pixel:

Unsigned long set by PR cbhtaining the background pixel color for the
window attributes that PR is requesting PD to send.

wat_parent:

XID set by PR containing the parent id of the window for which PR is
requesting PD to send the window attributes.

wat_port:

Unsigned short set by PR and used by PD containing the receiver port
that the window attributes are to be sent to

wat_id:

XID set by PR containing the graphics context id of the window
attributes that PR is requesting PD to send.

wats:

An XWindowAttributes structure set by PR containing the window
attributes that PR is requesting PD to send.

get_gc:

Integer set by PR indicating that PR wants PD to request graphics
context info from PM,.

send_gc:

Integer set by PR indicating that PR wants PD to send graphics context
info to PM.

gc_channel:

Integer set by PR containing the source channel for which PD is
requested to retrieve the graphics context info.

ge_1id:
XID set by PR containing the id of the graphics context.

gc_port:

Unsigned short set by PR containing the receiver’'s port where PD sends
the graphics context info once obtained.

pr_close_channel:

Integer set by LDM indicating to PR that there is a channel to be
closed.

pr_close_client:

Integer set by LDM indicating to PR which channel to close.

clients[]:

An array of integers set by LDM indicating which client is being
distributed on each channel.

source_default_gc([]:

An array of unsigned longs set by LDM and used by PR containing the
default graphics context for each channel.

source_root|[]:

An array of unsigned longs set by LDM and used by PR containing the
source root id for each channel.

gewin(]:

Array of GCWIN structures set by multicast containing information about
the each local graphics context.

The GCWIN structure contains the following fields:

gid : XID containing the graphics id
window : XID containing the window id
mask : Unsigned long with bits set to indicate which GC values
are used
GCValues : XGCValues structure of graphics context values
win{]:

Array of WIN structures set by multicast containing information about
each local window.

The WIN structure contains the following fields:

window : XID containing the window id
background: Unsigned long containing the background pixel color for
the window attributes
parent : XID containing the window id of the parent window
A -4

i |

.l

. Qi El Wi =N w0 e

e

it

&L

|” TRE}
RN

(.

IS

client[]:

Array of integers set by multicast and used by PD indicating the client
id of the corresponding X Protocol buffer.

len{]:

Array of integers set by multicast and used by PD indicating the length
of the corresponding X Protocol buffer.

window:

XID set by LDM and used by multicast containing the id of the window
to be distributed.

xbuffer[][]:

Array of buffers of unsigned characters written by multicast and read
by PD, containing X packet data to be distributed.

management_host[]:

Character string set by PR and LDM and used by PD containing the host
name for the Central Distribution Manager.

.

i

APPENDIX B

DEDICATED HOST SHARED MEMORY

The Dedicated Host Shared Memory structure has the following fields:

sm_status:

Integer indicating the status of the shared memory. The following
values are possible:

- AOK : initialization value
- PM_DIE : CDM is requested to quit
read pipe:

Integer set by CDM and used to indicate to PM that there is a new
Channel Map.

pm_port:
Unsigned short set by PM and used by CDM containing the PM port number.
nev_source_channel:

Integer set by CDM to indicate to PM that the new source channel has
been added to the downloaded channel map.

remv_source_channel:

Integer set by CDM to indicate to PM that the source channel has been
removed in the downloaded channel map.

nev_receiver_ channel:

Integer set by CDM to indicate to PM that the new recelver channel has
been added to the downloaded channel map.

remv_receiver_channel:

Integer set by CDM to indicate to PM that the receiver channel has been
removed in the downloaded channel map.

station index:

Integer set by CDM and used by PM containing the index of the
distributing station.

source_default gc(]:

An array of unsigned longs set and used by CDM containing the default
graphics context for each chanmel.

source_root[]:

An array of unsigned longs set and used by CDM containing the source
root id for each channel.

dest_fd[][]:

Array of integers set and used by PM containing by channel and by
receiver all receiver file descriptors actively receiving protocol on each
channel.

source_fd[]:

Array of integers set and used by PM containing by channel the file
descriptors that are active sources for each channel.

Stations([]:

Array of Stations structures to describe a workstation configured with
a Protocol Distributor and a Protocol Receiver. The structure values are
set and used in CDM and PM. For a description of the individual structure

members, see Appendix J.

ChanMap[]:

Array of ChanMap structures to hold channel map information. The
structure values are set and used in CDM and PM. For a description of the
individual structure members, see Appendix J.

source _name[][]:

Array of character strings set by CDM containing the source name for
each channel.

channel_bytes|]:

_ Array of unsigned longs to store accumulated byte counts passing through
PM for each channel. Used for LAN traffic measurement.

receiver bytes[]:

Array of unsigned longs to store accumulated byte counts passing through
PM for each receiver. Used for LAN traffic measurement.

il il

i W[E om0 wo) e mo o«

witl

il

& El W

w1

distributor_bytes[]:

Array of unsigned longs to store accumulated byte counts passing through
PM for each distributor. Used for LAN traffic measurement.

no_of_packets[]:

Unsigned long containing the accumulated count of packets passing
through PM. Used for LAN traffic measurement.

r

£

(

(

ol

APPENDIX C

1/0 REQUEST TYPES

The I/0 Request Types

NOOP:

No operation request.

X_DATA:

Indicates that an X Data packet will follow.

EXPOSE:

Used

GWATS:

Used

GGCS:

Used

WATS:

Used

GCS:

Used

SHUTCOMP:

Used

to

to

to

to

to

to

request an expose event from the source.

request Window Attributes from the source.

request Graphics Context State from the source.

send Window Attributes to the receiver.

send Graphics Context State to the receiver.

indicate that shutdown of receiver channel is complete.

I

oo

('

(

o
T

i b

APPENDIX D

RPC REQUEST CODES

CDM_GET_LIST

Request to retrieve the channel map - id list.
CDM_DIST_REQ

Distribution Authorization Request.
CDM_RECV_REQ

Reception Authorization Request.
CDM_REMV_CHAN

Request to remove a channel.
CDM_REMV_RECV

Request to remove a receiver from the linked list.
CDM_PRESENT

Broadcast request to locate dedicated host.
CDM REG_DIST

Register a Distributor Request.
CDM_REG_RECV

Register a Receiver Request.
CDM_GO_AWAY

Request to go away, exit.

(]

Input structure:

Void

APPENDIX E

RPC DATA STRUCTURE FOR RETRIEVE TV GUIDE

Output structure:

tv_guide[]

Array of strings of characters, one string per channel.

=a

!n A

€7

Hl:

(I

(e

CHnT

(o

C

g

APPENDIX F

RPC DATA STRUCTURE FOR DISTRIBUTION AUTHORIZATION

Input structure:
ChanlD

- chanid([]
- hostname][]

- distributor_id :

- pr_port
- default_gc

- root
- xid

Output structure:
DstAuth :
- authorization

- channel
- pm_port

Array of characters containing the source name
Array of characters containing the host name
Integer containing the id number for the
distributor

Unsigned short containing PR port number

Unsigned long containing the XID of the default
graphics context

Unsigned long containing the XID of the source root
Unsigned long containing the client xid

Integer indicating whether distribution 1is
authorized

Integer indicating channel to distribute on
Unsigned short indicating port number

"

€l

G e

i

dl

Ce

g
[

! o

Cr

CTi

i

(S

APPENDIX G

RPC DATA STRUCTURE FOR RECEPTION AUTHORIZATION

Input structure:
ChanReq :

channel
hostname[]

pr_port
Cutput structure:
RecvAuth :
- authorization:

- pm_port
- default_gc

- root

distributor_ id :

Integer indicating channel to receive on

Array of characters containing the host name
Integer containing the 1d number for the
distributor

Unsigned short containing PR port number

Integer indicating whether distribution 1is
authorized

Unsigned short indicating port number

Unsigned long containing the XID of the default
graphics context

Unsigned long containing the XID of the source root

1
i |

|

APPENDIX H

RPC DATA STRUCTURE FOR CANCEL DISTRIBUTION

L Input structure:
= channel : Integer indicating channel to remove.
Output structure:
retval : Integer indicating whether request was successful.

l\ XN

APPENDIX 1

RPC DATA STRUCTURE FOR CANCEL RECEPTION

Input structure:

RemvRecv
- channel : Integer indicating channel to remove
- portnum : Unsigned short indicating port number

Cutput structure:

- retval Integer indicating whether request was successful

I

APPENDIX J

CHANNEL MAP AND STATION STRUCTURES

ChanMap:

Array of ChanMap structures to hold channel map information. The
structure has the following members:

num_receivers
client_id

recv_ports(]

recv_hostname[][]

source_hostname[]

Stations:

Integer set and used by PM and CDM, indicating
number of receivers for this channel

Integer set by CDM and used by PM indicating
client number for this channel

Array of unsigned shorts set and used by PM
and CDM, containing the port numbers of each
recelver

Array of character strings set by CDM
containing the port name for each receiver
Character string set by PM and CDM and used
by PM, containing the source name for this
channel

Array of Stations structures to describe a workstation configured with
a Protocol Distributor and a Protocol Receiver. The structure has the
following members:

pd_£d
pr_fd

num_channels

dist_channel[]

dist_client[]

hostname[]

Integer set by PM and used by PM and CDM,
indicting file descriptor for PM to read from
Integer set and used by PM, indicating file
descriptor for PM to write to

Integer set by PM and used by PM and CDM,
indicating number of channels this station is
distributing on

Array of integers set and used by PN,
containing channel numbers of active channels
Array of integers set by CDM and used by PM,
containing client being distributed on each
associated dist_channel

Character string set by CDM and used by PM,
indicating name of host for distributor

e (1l I

1

[

APPENDIX K
SERVER LISTINGS

/**

The included program listings are prototypes, no warranty is expressed or
implied for their use in any other fashion. They should not be considered
or used as production software. The information in the 1listings is
supplied on an "as is” basis. No responsibility is assumed for damages
resulting from the use of any information contained in the listings.

The software in these listings has been compiled on Masscomp 6350's and
6600's and on Sun 3's and 4's. Modifications may be necessary for use on

other systems.
Fedededde g gk kR KRk ddek gkt ko k ok k ok ok kdokddkkkk ko kkkkkkkdkkdkkkkkkkkkkkk /

/*
* This routine is linked into the X-Server to allow multicasting
* of client X-protocol to the distribution server.
*/

#include <sys/types.h>

#include <sys/param.h>

#include <sys/lock.h>

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/walt.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#include <signal.h>

#include <setjmp.h>

#include <math.h>

#include <X11/X.h>

#define NEED_REPLIES

#define NEED_EVENTS
#include <X11/Xproto.h>
#include <X11/X1lib.h>
#include <X11/Xutil.h>

#include ”*../includes/ds_manage.h”
#include ”../includes/smtypes.h”
#include "../includes/smdef.h”
#include ”../includes/xdefs.h”
#define TRUE 1

#define FALSE 0

#ifdef PROFILE

#include ”"../includes/dist.h"
#define dispShareOverhead PAKLEN
#endif

/ *
* GLOBAL VARIABLES
*/ ‘
struct MC_SHMEMORY *shmem;
static int locked [XBUFFERNUM] ;
static int current_buffer = 0;
int shmid;
/%
* GLOBAL FUNCTIONS
*/
void go_away();
int lock();
void unlock();
void lock_others();
static int semcall();
/*
* EXTERNAL FUNCTIONS
*/
extern check_gcwin();
extern check new window();

extern char XFunctNam;[][EO];

Jededededededekdded gtk kekdok koot kkdokkkkedodokokkdkek ok kdedeokokoeok /
/*
* This routine is called from the X server itself.
*/
multicast(client_index,bufptr,len)
register int client_index;
register unsigned char *bufptr;
register int len;

register struct MC_SHMEMORY *memptr;

register int i;
static int first_time = TRUE;

static int last_len = O;
static int prev_buffer = XBUFFERNUM - 1;

int lock_status;
/* Initialize */

memptr = shmem;

* If this is the first time through here for a wanted
* client, then we need to do some things first before
* we can continue:

* o attach to shared memory

*

if (first_time) {

first_time = FALSE;

wi

g
i

Lt

wil

L

el o

¢

#ifdef PROFILE

fprintf(stderr,”"Display Sharing overhead: $d\n" ,,dispShareOverhead);

#endif "

/*

* Set up to clean up before quitting
*/

signal (SIGQUIT, go_away);

for (1=0;i<XBUFFERNUM;i++)
locked[1i] = FALSE;

/* create the shared memory area */
create_shared_memory();

#1fdef TRACE
fprintf(stderr,”"MC: :shared memory created shmem:0x$x\n”, shmem);

#endif
memptr = shmem;

/* create shared memory semaphore */
create_semaphore();

#ifdef TRACE
fprintf(stderr,”"MC: :semaphore created\n");
#endif

/%
* See if we need to note the particular gc-window combination
*/

check_gcwin(bufptr);

/* now check to see if the client is wanted */
if (!memptr->wanted[client_index])
return;

} /* end if first time */

/*
* Keep checking to see if we are supposed to go away
*/

if (memptr->sm_status==DIE) {
fprintf(stderr,”MC:: Requested to die...\n");
sleep(5);
fprintf(stderr,”MC:: BYE BYE.\n");
go_away();
)
/*

* See if we need to note the particular gc-window combination

*/
check_gcwin(bufptr);

/*
* If the protocol distributor is not alive, return
*/
if ('memptr->pd_alive)
return;

#ifdef DUMMY
return;
#endif

#ifdef PROFILE
/* increment profile array */
if ((*bufptr > lastRequest) || (client_index > MAX CLIENTS))

fprintf(stderr, "MC-PROFILE:: Unknown request: [%d],
client:[#d]\n", *bufptr, client_index);

else
memptr->pArray[*bufptr][client_index]++;

/* accumulate length for total byte count to calculate throughput */
len = get_length(bufptr);

memptr->accumlen|[client_index] += len + dispShareOverhead;
memptr->currlen|{ client_index] += len + dispShareOverhead;

/* check if profiler wants to exit */

if (memptr->wantToExit =— TRUE) {
memptr->wantToExit = FALSE;
fprintf(stderr, "MC:: profile wants to exit.\n”);

sleep(5);
fprintf(stderr, "MC:: profile done.\n" };
go_away();
)
#endif
/*
* Check to see if there is a new window to be sent.
*/

check_new_window() ;

if (!(memptr->wanted|[client_index]))
return;

/*
* Now write the correct data out to the distribution server.
*/

len = get_length(bufptr);

1f (len >= XBUFFERSIZE) (
fprintf(stderr, "MC:: *** Request larger than buffer (%1d) !!!

K -4

I

i u

G &

i

Y

ol

i

i}

LT

LAl

[

*%x\n", len);
go_away();
)

while (19 |
lock_status = lock(memptr->semaphore, prev_buffer, IPC_NOWAIT);
/* See if the next buffer is empty so we can put stuff into it */
if (memptr->buf stat[current_buffer] == SM_EMPTY) {

unlock(memptr->semaphore, prev_buffer);
lock(memptr->semaphore, current_buffer, 0);

memptr->client[current buffer] = client_index;
memptr->len[current_buffer] = len;
memcpy(memptr->xbuffer[current_buffer],bufptr,len);
memptr->buf_stat[current_buffer] = MULTICAST;

unlock(memptr->semaphore, current_buffer);
lock_others(current_buffer);

last_len = len;

prev_buffer = current_buffer;

current_buffer++;

if (current_buffer >= XBUFFERNUM)
current_buffer = 0;

return;

)
/* Buffer is being used, can we add to the end of the previous one ? */

else if ((lock_status == 0) &&
(memptr->buf_stat[prev_buffer] =— MULTICAST) &&
(memptr->client[prev_buffer] = client_index)) ({

if ((len + last_len) < XBUFFERSIZE) (
memptr->len[prev_buffer] += len;
memcpy(memptr->xbuffer[prev_buffer] + last_len, bufptr,

len);
unlock(memptr->semaphore, prev_buffer);
last_len += len;
return;
)
else {
/* can’'t fit any more requests into this buffer */
unlock(memptr->semaphore, prev_buffer);
#ifdef TRACE
fprian(stderr,"*%d*",current_buffer);
#endif

K-35

sleep(l);

)

)

else (
J*
* If we get here:
* the current buffer was busy AND
* we either
* could not lock the previous one OR
* the buffer was empty OR
* the new request was for a different client.
*/

unlock(memptr->semaphore, prev_buffer);

#ifdef TRACE

if (lock_status != 0)

fprintf(stderr,”l:%d.”,lock_status);

if (memptr->buf stat[prev_buffer] != MULTICAST)

fprintf(stderr,”s:%d.” ,memptr->buf_stat[prev_buffer]);
if (memptr- >client[prev buffer] != client index)

fprintf(stderr,”c:%d.” ,memptr- >client[prev_buffer])i
fprintf(stderr,"!%d!”,current_buffer);
#endif

sleep(l);
} /* end else */

/*
* Keep checking to see if we are supposed to go away
*/
if (memptr->sm_status==DIE) ({
fprintf(stderr,”MC:: Requested to die...\n");
sleep(5);
fprintf(stderr,”MC:: BYE BYE.\n");
go_away();
}
H /* end while */

} /* end multicast */
SRRk kkkdekdkokokokokok bk kbbb kbbb ko kkok /

/ dedkedde gk ke kK k ke ok khddkddok ko hkdkkkkkkkkkddhhdhkkhkkhkkkx /

/*

* This routine creates the shared memory area used by

* both the multicast routine and the Protocol Distribuctor.

*/
int
create_shared_memory()

{
register int i;

/* kill any existing memory segments */
if ((shmid = shmget(SM_KEY,0,0)) >= 0) (

K- 6

Qi w0 W i q

ikl |

[

[

&l |

ai

i €

[
[

Q|

f
]

o WL Wl
i il i1 \[|

L

"

{

g

¢

(

[l

¢

{1

fprintf(stderr,”Shared memory exists (8d), removing it\n”,shmid);
shmetl(shmid, IPC_RMID, (struct shmid_ds *)0);

)

/* create a new one */

shmid = shmget(SM_KEY, sizeof(struct MC_SHMEMORY),

IPC_CREAT | 0777);

if (shmid < 0) {

perror ("MC: :shmget (create_shared_memory:");
fprintf(stderr,”MC:: shmid < 0 !1!111!\n");

go_away();
}

/* attach to it */

shmem = (struct MC_SHMEMORY *)shmat(shmid,0,0);
if (shmem==(struct MC_SHMEMORY *)-1) {
perror (”"MC: :shmat (create_shared_memory):");
fprintf(stderr,”MC:: shmem == *(-1)\n");

go_away();
}

#ifdef LOCKIT
/* lock it into memory */

1f (plockin(shmem,sizeof(struct MC_SHMEMORY))<0)
perror(”"MC:: plockin(Shared Memory):");

#endif

shmem->sm_status
shmem->pd_alive
shmem->pd_pid
shmem->pm_port
shmem->pr_port
shmem->window
shmem->pd_propagate_expose
for (i=0;i<MAX CLIENTS;i++)
shmem->wanted[1]
for (i=0;i<MAX_GCS;i++) {
shmem->gecwin(i].gid
shmem->gewin[1] .window

SM_EMPTY;
FALSE;

.
’
.

for (i=0;i<MAX CHANNELS;i++) (

shmem->clients{1]

- -1;

shmem->source_default_gc(i] = O;

shmem->source_root[i]
)
for (i=0;1i<XBUFFERNUM;i++)

shmem->buf_stat[i]
shmem->get_wat
shmem->send_wat
shmem->wat_channel
shmem->wat_port
shmem->get_gc

SM_EMPTY;
FALSE;
FALSE;
-1;

shmem->send_gc = FALSE;

shmem->gc_channel - -1;
shmem->gc_port = 0;
shmem->pr_.init = FALSE;
shmem->pd_init = FALSE;
shmem->pr_close_channel = FALSE;
shmem->pr_close_client - -1;
return{TRUE) ;

) /* end create_shared_memory */
JFFdddkdkkkdokokokk ko dkkek koo kokkkk kool ok koo ook ok /

SRk koo ek ko ko ook eokkkkkok ok /
/*

* This routine replaces the exit call. May be used to
* clean up before exiting.

*/
void
go_away()
{
int i;
/*
* Get rid of the semaphore identifier.
*/
for (i=0;i<XBUFFERNUM;i++)
semctl(shmem->semaphore,i,IPC_RMID,0);
/*
* Get rid of the shared memory identifier.
*/
shmctl(shmid, IPC_RMID,0);
/*
* Tell someone we are going away.
*/
fprintf(stderr,”MC:: EXITING..... \n”");
sleep(5);
exit(0);

} /* end go_away */
JRkkkkkkkkkokokk ok dobkkbkokkkdkok kbbb kk kb kb kkkkkkkkkxk /

[k koo ko koo kokeokokoeok /
J*

This routine returns the length of the particular
protocol package. Note that the length is the second
two bytes of the packet, in terms of 32 bit
quantities. We left shift by two to get the byte
count.

* % & ¥ *

*/
int
get_length(ptr)

il Ll o i

i

I

wil.

Qi |

wi]

Qi

L

e

(

{

register unsigned char *ptr;

register unsigned short *shortptr;
register unsigned short length;

shortptr = (unsigned short *)(ptr+2);
length = (*shortptr<<2);

return(length);

) /* end get length */
[k dkkddkdkokkkekkdokokk ko koo kkokkodokkokok ook /

/**/

/*

* This routine creates the shared memory semaphore

*/
{

create_semaphore()
int i;
union semun (
int val;
struct semid ds *buf;
ushort *array;
) arg;

/*

struct sembuff sb;
sb.sem op = -1;
sb.sem_flg = 0;

* Create all the semaphores.

*/

shmem->semaphore = semget(IPC_PRIVATE,XBUFFERNUM,0666|IPC_CREAT);
if (shmem->semaphore<0) (
perror("MC: : semget (create_semaphore):”);
fprintf(stderr,"MC:: shmem->semap < 0!l \n");
go_away();
}

for (i=0;i<XBUFFERNUM;i++) (

arg.val = 1;

{f (semctl(shmem->semaphore,i,SETVAL,arg)<0) (
perror("MC: :semctl (create_semaphore):.”);
fprintf(stderr,”"MC:: semctl < 0) \n");
go_away();

}

sb.sem_num = i;

if (semop(shmem->semaphore,&sb,1l)==-1) {(
perror(”"semop (multicast):”);
fprintf(stderr,”MC:: semop == -1) \n");
go_avay();

)

locked[1i] = TRUE;
#ifdef TRACE -
fprintf(stderr,”MC:: create_semaphore locking:%d\n",i);
#endif
} /* end for 1 */

} /* end create semaphore */
JFRFFF KKK kkkkkkkkkkk ok kkkkdokkkkkkokodkodokokdokokokookodokok /

/**/

/*
* This routine locks on a semaphore.
*/
int
lock(id, buffer, flag)
register int id;
register int buffer;
short flag;

(

#ifdef SEMAPHORE -
fprintf(stderr,”MC:: attempting to lock buffer:sd\n” ,buffer);

#endif

J*

% If it is already locked, do not

* bother with system call.

*/

if (locked[buffer])

{

#ifdef SEMAPHORE

fprintf(stderr,"MC:: buffer d already locked, returning

“ buffer);

#endif
return(0);
)
/*
* Otherwise, lock the semaphore and begin processing
*/

if (semcall(id,-1,buffer,flag) = 0) {
locked[buffer] = TRUE;
#ifdef SEMAPHORE
fprintf(stderr,”MC:: just locked that semaphore\n”);
#endif
return(0);
}

#ifdef SEMAPHORE
fprintf(stderr,”MC:: could not lock that semaphore\n”);

K - 10 °

early\n”,

;i g g ¢

T

1
&
Qi

1

o @i Wi e N LY ®ili

]

l. | r I

(R

1

{

H

§

I

U

can
b

l i

(I

#endif
return{ -1);

) /* end lock */
SRRk T FRIEIIIIII Kk ko okokdookkokoek ok /

SRR E R RFFRFFIIRTR IRk ook /
/*
* This routine unlocks a semaphore.
*/
void
unlock(id, buffer)
register int id;
register int buffer;
({
#ifdef SEMAPHORE
fprintf(stderr,”MC:: attempting to unlock buffer:sd\n” ,buffer);
#endif
/*
* If the semaphore is not locked, then don’t unlock it
*x/
if ('locked[buffer]) ({

#ifdef SEMAPHORE
fprintf(stderr,”MC:: it is not locked, returning early\n");
#endif

return;

)

semcall(id,l,buffer,0);
locked[buffer] = FALSE;

#{fdef SEMAPHORE
fprintf(stderr,”MC:: just unlocked that semaphore\n”);
#endif

} /* end unlock */
JRFd A F KRRk ko ke ko ko kkdkkekkekokok /

/ e dede e de e dede e o de o ok de e e de e dodede ek deode ke dede ke de ok g e de ke dedek dedek dede ke ke kdeokk ok /

/*

* This routine performs the semaphore operations.
*/

static int

semcall(sid,op,buffer,flag)
register int sid;
register int op;
register int buffer;
short flag;

struct sembuff sb;

K-11

sb.sem_num = buffer;
sb.sem_op = 0p;
sb.sem_flg = flag;
if (semop(sid,&sb,l)=-1) {
if (sb.sem_flg & IPC_NOWAIT)
return(-1);
perror(”semop (multicast):");
fprintf(stderr,"MC:: semop == -1) \n");
go_away();
)

} /* end semcall */
JRkFkdkdkokkdkok kb kokkkkkkkkkkkkkkkkkdekkodekkokdokokookokokokkodeok /

[k koo ko kdekdkkdok kb kdkdeokkkkok ookl ok koo /

/*

* This routine attempts to lock the semaphore associated
* with empty x buffers so that the Protocol Distributor
* does not do so much busy work.

*/

void

lock_others(current)
register int current;

{
register int i;
register struct sembuff *sbptr;
struct sembuff sb;

#ifdef SEMAPHORE
fprintf(stderr,"MC:: lock others called in buffer:sd\n”,current);

#endif

sbptr = &sb;
for (i=0;i<XBUFFERNUM;i++) (
if (1locked[1i] &&
il=current &&
shmem->buf_stat[i]==SM_EMPTY) {
#ifdef TRACE
fprintf(stderr,”MC:: locking additionally buffer:sd\n”,i);
#tendif
sbptr->sem_num = i;
sbptr->sem op = -1;
sbptr->sem_flg = 0;
locked[1] =~ TRUE;
if (semop(shmem->semaphore,sbptr,l)==-1) (
perror(*semop (lock_others):”);
fprintf(stderr,”MC:: semop == -1) \n");
go_away();
} /* end if */

)} /* end if */
#ifdef SEMAPHORE

K- 12

|

1

Qi

ai

[g (P] &

i

i |

I

i

cr

U

[

(" I R

{

else {
fprintf(stderr,”MC:: not locking %d locked:%d current:$d stat:gd\n”,

i,locked[1],current,shmem->buf_stat{i]);
)

#endif
} /* end for i */

) /* end lock others */
JrrkrRFF R IT RISk Rk kKK dokk kb ki kkokok /

K - 13

/* ‘

File : multix.c

Date : 10/26/89

Author .. : P. Fitzgerald SwRI

Description : This file contains all the X Window related code for the

multicast routine.

x kb X K
o

*/
#include <sys/types.h>
#include <sys/param.h>
#include <stdio.h>
#include <X11/X.h>
#define NEED_REPLIES
#define NEED_EVENTS

#include <X11/Xproto.h>
#include <X11/X1lib.h>
#include <X11/Xutil.h>

#include "../includes/ds_manage.h"
#include "../includes/smtypes.h”
#include "../includes/smdef.h”
#include "../includes/dist.h”

QL

T I I 3
T

#define TRUE 1
#define FALSE O
#define ASYNC TRUE
#define NOASYNC FALSE

/*

* GLOBAL ROUTINES

*/

int mapped() ;
int get_index();

il

/*

* EXTERNAL VARIABLES

*/

struct MC_SHMEMORY *shmem;

it

| AF

/*
* GLOBAL VARIABLES
*/

static int numwins = 0;

I

JHrkk kR gk ok ko kool dokoookokedokokoekokekek /
/%
* This routine checks shared memory to see if the window
* distribution manager has requested that we start sending
* a new window over to the target.
*/
void
check_new_window()

{

Qi

€l

il
ik

register int client;

K- 14

®
o

{
i

i
'

('

CH

register struct MC_SHMEMORY *memptr;

memptr = shmem;

/* B
* Note that the upper so many bits of the window id will
* yield the client index in the MIT implementation.

*/
if (memptr->start) ({
memptr->start = FALSE;
client = memptr->window;
memptr->wanted[client] = TRUE;

} /* end if */

) /* end check_new_window */
Sk kR Rk Rk kR kkk kRl ke kookkk ke kkokok /

/***/
/*
* This routine checks the X buffer to determine if there is
* any code related to a Craphics Context. If there is, the
* information is stored in shared memory even if the client
* is not yet 'wanted' for distribution.
*/
void
check_gcwin(bufptr)
register unsigned char *bufptr;
{

register unsigned char xtype;

register xCreateGCReq *CreateGC;

register xChangeGCReq *ChangeGC;

register xCopyGCReq *CopyGC;

register xResourceReq *ResourceReq;

register xCreateWindowReq *CreateWindow;

register xChangeWindowAttributesReq *Cwats;
register struct MC_SHMEMORY *memptr;

int ge_index;
int dest_index;

memptr = shmem;

/*
* Determine what type of X request it is.
*/
xtype = (int) (*bufptr);
/*

* Now handle different types of Graphics Context calls.

*/
switch (xtype) {

/**/

/*

* Handle credtion of Window

*/
case X CreateWindow:
#ifdef TRACE
fprincf(stderr,”MC:: X CreateWindow protocol noticed.\n");

#endif
CreateWindow = (xCreateWindowReq *)bufptr;

store_window_background(CreateWindow->wid,CreateWindow->mask,bufptr, num

wins);

memptr->win[numwins].parent = CreateWindow->parent;
#1fdef TRACE
fprintf(stderr,”MC:: store parent Ox%x, wid Ox%x, index: %d\n”,
CreateWindow->parent,CreateWindow->wid,numwins);
#endif

numwins++;

if (numwins>=MAX WINS) (

fprintf(stde;r,"MC::window/backgroundoverflow.\n");

)
break;
/**/

/**/

/*

* Handle change of window attributes

*/
case X_ChangeWindowAttributes:

#ifdef TRACE
fprintf(stderr,”MC:: X_ChangeWindowAttributes protocol noticed.\n");

#endif
Cwats = (xChangeWindowAttributesReq *)bufptr;

change_window_background(Cwats->window,Cwats‘>va1ueMask,bufptr);

break;
/**/

JFF Rk ekkok ke koo koo ook ootk ko /
/*

* Handle creation of Graphics Contexts

*/

case X CreateGC:

/* get first new index */
gc_index = get_index(0);
/* Check to see if we reached our limit */
if (gc_index < 0) (
fprintf(stderr,”MC:: GC_WINDOW map overflow in shared memory.");

K - 16

o & w &« LIl

I

e

g & |

(

o

crI

)

(1 N R (1 F

(-

o

e

perror("MC:: GC_WINDOW map overflow 1in shared

memory.");
return;
)
/* Set pointer to protocol packet */
CreateGC = (xCreateGCReq *)bufptr;
/* Store the initial id values and which drawable the
ge 1s associated with. */
memptr->gcewin[ge_index].gid = CreateGC->gc;
memptr->gcwin[ge_index].window = CreateGC->drawable;
/*

* Set foreground and background to default values, server will not set
* mask bits for defaults !
*/
memptr->gcewin[ge_index].GCValues.foreground = 0;
memptr->gcwin[ge_index].GCValues.background = 1;

#ifdef TRACE
fprintf(stderr,”MC:: check_gcwin (createGC) > gid: Oxs%lx, window: Ox%lx,

mask: Oxtx (num: $d)\n”,
memptr->gcwin[gc_index].gid,memptr—>gcwin[gc_index].window,CreateGC->ma

sk, gc_index);
#endif

/* Now that we have mapped that one, lets store
its current values into shared memory. */

store_gc_values(gc_index,CreateGC->mask,(bufptr+sz_xCreateGCReq));

break;
/**/

JHRkk R AR R R kkkkkk ke ddokk kool ekl koo ko ks /
/*
* Handle Changing of specific graphics context fields.
*/
case X_ChangeGC:

/* Pointer to request */
ChangeGC = (xChangeGCReq *)bufptr;

/* Is this GC in our list? */
gc_index = get_index(ChangeGC->gc);
if (ge_index < 0) (
fprintf(stderr,”...changeGC trying to access non-existent id: Ox%x\n",
ChangeGC->gc) ;
return;

#1fdef TRACE

K - 17

fprintf(stderr,”check _gcwin (changeGC) > gid: Oxslx, window: Ox$lx (num:
$d)\n",
memptr->gcwin(ge_index].gid,memptr->gcwin([ge_index].window, gc_index);
#endif - .

/* Yes so copy new values into memory */
store_gc_values(gc_index,ChangeGC->mask,
(bufptr+sz_xChangeGCReq));

break;
/**/

Sk dekdekkdkdddkk ko kdeook sk dekek ke ddokkkkekkdeokkdkdedoekdeoodkokkokekokokkokk /
/*
* Handle Copying from one GC to another.
*/
case X_CopyGC:

/* Pointer to request */
CopyGC = (xCopyGCReq *)bufptr;

/* Get source and destination indexes */
gc_index = get_index(CopyGC->srcGC);
dest_index = get_index(CopyGC->dstGC);

if (gc_index < 0) (
fprintf(stderr,”...copyGC trying to access non-existent source id:
Oxsx\n", CopyGC->s8rcGC);
return;

)
if (dest_index < 0) {
fprintf(stderr,”...copyGC trying to access non-existent dest id: Ox%x\n",
CopyGC->dstGC) ;
return;

}

#ifdef TRACE . .
fprintf(stderr, "check_gcwin (copyGC) > gid: Oxslx, window: Ox%lx (srcIx:

td, destIx: sd)\n”,
memptr->gcwin[ge_index].gid,memptr->gcwin[ge_index].window,gc_index,des

t_index);
#endif

/* Copy GC Values from memory to memory */
copy_gc_values(gc_index,dest_index,CopyGC->mask) ;

break;
/**/

/**/

/*

K - 18

i

i

@i

t
||

Qi

U

Il

(]

(S N (OO S (S SR (A

cr

* Handle Freeing a GC.

*/
case X _FreeGC:

/* Pointer to request */

ResourceReq = (xResourceReq *)bufptr;
ge_index = get_index(ResourceReq->id);
1f (gc_index<0) {

fprintf(stderr,”...freeGC trying to free non-existent id: Ox%x\n",

ResourceReq->id);
return;

}

#ifdef TRACE

fprintf(stderr,”check_gcwin (freeGC) > gid: Ox%lx, window: Ox%lx (num:

sd)\n",

memptr->gcwin[gc_index].gid,memptr->gcwin[gc_index].window,gc_index);

#endif

memptr->gewin[ge_index].gid = 0;
memptr->gewin[ge_index] .window = 0

break;
/**/

/**/

/*
* The default is to just ignore the protocol.
*/
default:
break;

} /* end switch */

} /* end check_gcwin */
/**/

Jhkdkkdkdkkokokokkkokokok ok ok ook ook ook /

/*

* This routine parses the X data buffer for Graphics

* Context state data based on the input mask and stores

* those values In shared memory.

*/

store_gc_values(index,mask,bufptr)
register int index;
register unsigned long mask;
register unsigned char *bufptr;

register struct MC_SHMEMORY *memptr;
register XGCValues *valptr;

K- 19

&
memptr = shmem;
valptr = &(memptr->gcwin{[index].GCValues); oz
/*
* Go through all the possible mask values and if true, —
* store the value into shared memory. -
*/
if (mask&GCFunction) { =
#ifdef ALL_MASK -
memptr->gewin(index].GCValues. function =
#else =
valptr->function = -
#endif
(int)*((int *)bufptr);)
bufptr+=sizeof(int); _
)
if (mask&GCPlaneMask) (-
#ifdef ALL MASK
memptr->gcwin|index].GCValues.plane_mask -
#else
valptr->plane_mask = -
#endif
(unsigned long)*((unsigned long*)bufptr); —
bufptr+=sizeof(unsigned long); %%
)
if (mask&GCForeground) ({ =
#ifdef ALL MASK -
memptr->gewin(index].GCValues. foreground -
#else -
valptr->foreground = %%
" #endif
(unsigned long)*((unsigned long*)bufptr);
bufptr+=sizeof(unsigned long); =
-
#ifdef TRACE
fprintf(stderr,”---store_gc_values (ix: $d): foreground is %d\n", =
index, memptr->gcwin[index].CCValues.foreground Y]
#endif
) =
-
if (mask&GCBackground) |
#ifdef ALL_MASK ==
memptr->gcwin{index).GCValues.background - -
#else
valptr->background = e
#endif %
(unsigned long)*((unsigned long*)bufptr);
K- 20 -

(!

¢

e

(]

o

bufptr+=sizeof(unsigned long);

#ifdef TRACE

fprintf(stdetr,”---store_gc_values (ix: #d): background is sd\n",
index, memptr->gcwin[index].GCValues.background);

#endif

)

#ifdef ALL_MASK
if (mask&GCLineWidth) ({
memptr->gewin{index].GCValues.line_width -
(int)*((int *)bufptr);
bufptr+=sizeof(int);
)

if (mask&GCLineStyle) {
memptr->gewin(index).GCValues.line_style =
(int)*((int *)bufptr);
)

if (mask&GCCapStyle) {
memptr->gcwin[index].GCValues.cap_style =
(int)*((int *)bufptr);
bufptr+=sizeof(int);
}

if (mask&GCJoinStyle) (
memptr->gcwin[index].GCValues. join_style -
(int)*((int *)bufptr);
bufptr+=sizeof(int);
}

if (mask&GCFillStyle) {
memptr->gcwin[index].GCValues.fill style -
(int)*((int *)bufptr);
bufptr+=sizeof(int);
}

if (mask&GCFillRule) {
memptr->gcwin[index].GCValues. fill_rule =
(int)*((int *)bufptr);
bufptr+=sizeof(int);
}

if (mask&GCTile)
memptr->gewin[index].GCValues.tile =
(XID)*((XID *)bufptr);
bufptr+=sizeof (XID);
)

if (mask&GCStipple) {

K- 21

if

if

if

if

if

if

if

if

memptr->gcwin[index].GCValues.stipple =

(XID)*((XID *)bufptr);

bufptr+=sizeof(XID);

(mask&GCTileStipXOrigin) {

memptr->gewin(index].GCValues.ts_x_origin

(int)*((int *)bufptr);

bufptri+=sizeof(int);

(mask&GCTileStipYOrigin) (

memptr->gcwin[index].GCValues.ts_y_origin

(int)*((int *)bufptr);

bufptr+=sizeof(int);

(mask&GCFont) (

memptr->gewin[index].GCValues. font =

(XID)*((XID *)bufptr);

bufptr+=sizeof (XID);

(mask&GCSubwindowMode)

memptr->gewin[index].GCValues. subwindow_mode

(int)*((int *)bufptr);

bufptr+=sizeof(int);

(mask&GCGraphicsExposures) (

memptr->gcewin(index].GCValues.graphics_exposures
(Bool)*((Bool *)bufptr);

bufptr+=sizeof(Bool);

(mask&GCClipXOrigin) |

memptr->gewin[index].GCValues.clip_x_origin =

(int)*((int *)bufptr);

bufptr+=sizeof(int);

(mask&GCC1ipYOrigin) {

memptr->gewin|[index].GCValues.clip_y origin =

(int)*((int *)bufptr);

bufptr+=sizeof(int);

(mask&GCClipMask) |

memptr->gewin(index].GCValues.clip_mask =

(XID)*((XID *)bufptr);

bufptr+=sizeof (XID);

K - 22

&l

Ll

tm oy
b v 41

(

(.

(17

if (mask&GCDashOffset) {
memptr->gewin[index].GCValues.dash_offset =
“ (int)*((int *)bufptr);
bufptr+=sizeof(int);
}

if (mask&GCDashlList) (

memptr->gewin[index].GCValues.dashes -
(char)*((char *)bufptr);
bufptr+=sizeof(char);

}
#endif

memptr->gewin[index] .mask = mask;

) /* end store_gc_values */
JFkk ok dokdokkookookekkkek ok ook dokokdokkkdodeokokokkok ok kokk /

/**/

int

get_index(gid)
register XID gid;

{
register int i;
register struct MC_SHMEMORY *memptr;

/* Initialize */
memptr = shmem;

for (i=0;i<MAX GCS;i++) (
/* already in there */
if (memptr->gcwin[i].gid==gid)
return(i);
) /* end for */

return(-1);
} /* end get_index */
JRRddkdokkk ko kkkkkddekkokkkkkkkkkdkdokkk ko keokok ko kkokox /

/**/

/*

* This routine copies the contents of one graphics context

* to another.

*/

copy_gc_values(source,dest,mask)
register int source;
register int dest;
register unsigned long mask;

register struct MC_SHMEMORY *memptr;
register XGCValues *valptr;

K- 23

memptr = shmem;
valptr -“&(memptr->gcwin[dest].GCValues);

/*
* Go through all the possible mask values and if true,
* store the value into shared memory.

*/

if (mask&GCFunction)
#ifdef ALL_MASK
memptr->gcwin[dest].GCValues. function =
#else
valptr->function -
#endif
memptr->gcwin[source].GCValues. function;

if (mask&GCPlaneMask)
#ifdef ALL MASK
memptr->gcwin[dest].GCValues.plane_mask =
#else
valptr->plane_mask =
#endif
memptr->gcwin[source] .GCValues.plane_mask;

if (mask&GCForeground)
#ifdef ALL_MASK
memptr->gcwin[dest].GCValues.foreground =
#else
valptr->foreground =
#endif
memptr->gewin[source].GCValues. foreground;

if (mask&GCBackground)
#ifdef ALL MASK
memptr->gcwin[dest].GCValues.background =

#else
valptr->background =

#endif
memptr->gcwin[source)] .GCValues.background;

#ifdef ALL_MASK
if (mask&GCLineWidth)

memptr->gewin[dest].GCValues.line_width =
memptr->gcwin([source].GCValues.line_width;

if (mask&GCLineStyle)
memptr->gewin[dest].GCValues.line_style =
memptr->gcwin[source].GCValues.line_style;

if (mask&GCCapStyle)

K - 24

ity

L)

if

if

if

if

if

if

if

if

if

if

if

if

if

memptr->gewin[dest].GCValues.cap_style =
memptr->gcwin[source].GCValues.cap_style;

(mask&éCJoinStyle)
memptr->gewin[dest].GCValues. join_style =
memptr->gcwin[source].GCValues.join_style;

(mask&GCFillStyle)
memptr->gewin[dest].GCValues.fill_style =
memptr->gcwin[source].GCValues.fill_style;

(mask&GCFillRule)
memptr->gcwin[dest].GCValues.fill_rule =
memptr->gcwin|source].GCValues.fill_rule;

(mask&GCTile)
memptr->gewin[dest].GCValues. tile -
memptr->gcwin[source].GCValues.tile;

(mask&GCStipple)
memptr->gewin[dest].GCValues.stipple -
memptr->gcwin[source] .GCValues.stipple;

(mask&GCTileStipXOrigin)
memptr->gcwin|[dest] .GCValues.ts_x_origin -
memptr->gcwin[source].GCValues.ts_x_origin;

(mask&GCTileStipYOrigin)
memptr->gcwin[dest].GCValues.ts_y_origin -
memptr->gcwin[source].GCValues.ts_y_origin;

(mask&GCFont)
memptr->gcwin[dest].GCValues. font -
memptr->gcwin[source].GCValues. font;

(mask&GCSubwindowMode)
memptr->gcwin[dest].GCValues.subwindow_mode =
memptr->gcwin|source].GCValues.subwindow_mode;

(mask&GCGraphicsExposures)
memptr->gewin[dest].GCValues.graphics_exposures =
memptr->gcwin[source].GCValues.graphics_exposures;

(mask&GCClipXOrigin)
memptr->gcwin(dest].GCValues.clip_x_origin =
memptr->gcwin|source].GCValues.clip_x_origin;
(mask&GCClipYOrigin)
memptr->gcwin{dest].GCValues.clip_y_origin =
memptr->gcwin[source].GCValues.clip_y_origin;
(mask&GCClipMask)

K- 25

memptr->gcwin[dest].GCValues.clip_mask =
memptr->gcwin[source].GCValues.clip_mask;

if (mask&G€DashOffset)
memptr->gcwin[dest].GCValues.dash_offset -
memptr->gcwin[source].GCValues.dash_offset;

if (mask&GCDashlist)
memptr->gcwin[dest].GCValues.dashes -
memptr->gcwin[source].GCValues.dashes;
#endif

memptr->gcwin[dest] .mask = mask;

) /* end copy_gc_values */
JxFkkkRRRFIRIE Tk kkkokkkkkk ok k ok ok ok kkkk kA k kR IR I IRk, [

JRkFdekkRk Rk F Kk dokkkkkkkkk kA A xR I I I IR I I I KK IKIIKKKKAK [
int
store_window_background(wid,mask,bufptr,number)

XID wid;

unsigned long mask;

unsigned char *bufptr;

int number;

unsigned char *data;
register struct MC_SHMEMORY *memptr;

/* Initialize #*/
memptr = shmem;

/*

* Store this window id into the slot in the array
memptr->win[number].window = wid;

J*

* If Background Pixmap specified, then background pixel
* data follows it (if it is there)
*/
data = NULL;
if (mask & CWBackPixmap)
data = bufptr + sz_xCreateWindowReq + 4;
else if (mask & CWBackPixel)
data = bufptr + sz xCreateWindowReq,

if (data!=NULL)

memptr->win[number].background = *(unsigned long *)data;

#ifdef TRACE
fprintf(stderr,"MC:: store_window_background number: 8d

K - 26

win:Oxsx

i
i

il

I
i

Ei

1l

G
i

i

Wi

&b

(

background: 0xsx\n",
number,memptr->win[number].window,memptr->win[number].background);

#endif

} /* end store_window_background */
J ek kkkk kR R R IRk ookoioekok kool bk ook /

Sk Rk Rk dkkkk kR ke ek kddokokokok /
int
change window_background(wid,mask,bufptr)

XID wid;

unsigned long mask;

unsigned char *bufptr;

int i;

int number;

unsigned char *data;

register struct MC_SHMEMORY *memptr;

/* Initialize */
memptr = shmem;

/*
* Find the correct entry
*/
number = -1;
for (i=0;i<MAX WINS;i++) {
if (memptr->win[i].window==wid) {
number = i;
break;
)
} /* end for */

if (number<0) {
#ifdef TRACE
fprintf(stderr,”MC:: Unable to find window. to change
background.\n");
#endif
}
else (
data = NULL;
if (mask & CWBackPixmap)
data = bufptr + sz_xChangeWindowAttributesReq + 4;
else if (mask & CWBackPixel)
data = bufptr + sz_xChangeWindowAttributesReq;
if (data!=NULL)
memptr->win[number] .background = *(unsigned long *)data;

#ifdef TRACE

fprintf(stderr,”MC:: change_window_background number:sd win:Ox%x
background:Oxsx\n", .
number,memptr->w1n[number].window,memptr->win[number].background);

K - 27

#endif

Wi

} /* end else */

) /* end change_window_background */
JRdddkddkkkkkkk ok kkddkdkkkk ko ko dkkkkokokokok ok k ok kokdodokdeok /

i

1]

Il

-

K - 28 -

g ot i (

(Wm

{0

o

#include <sys/types.h>

#include <sys/param.h>

#include <stdjo.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <X11/X.h>

#define NEED REPLIES

#define NEED_EVENTS

#include <X11/Xproto.h>

#include <X11/X1lib.h>

#include <X11/Xutil.h>

#include "../includes/ds_manage.h”
#include "../includes/smtypes.h”
#include "../includes/smdef.h"

#include "../includes/dist.h”
extern struct MC_SHMEMORY *shmem;
extern int shmid;

#define TRUE 1
#define FALSE 0
main(argc,argv)

int arge;
char *kargv,;

{
int i;
int client;
xCreateGCReq CreateGC;
int first_time;
first_time = TRUE;
client = 10;
CreateGC.reqType = X CreateGC;
CreateGC.pad = 0;
CreateGC.length = sz_xCreateGCReq;
CreateGC.gc = 0x100;
CreateGC.drawable = 0x200;
CreateGC.mask - 0;

fprintf(stderr,”SwRI FAKE SERVER for client:%d\n",client);

#ifdef TRACE

fprintf(stderr,”Size of XGCValues struct:$d\n”, sizeof(XGCValues));
fprintf(stderr,”Size of XSetWindowAttributes struct:sd\n”,
sizeof (XSetWindowAttributes));

#endif

#ifdef SLOW

fprintf(stderr,”Compiled with SLOW characteristics.\n");
#endif
#ifdef VSLOW

K- 29

fprintf(stderr,”Compiled with VERY SLOW characteristics.\n");
#endif
fprintf(stderr,”Initialized...\n");
fprintf(stderr,”"Multicast (Server Mod) Running...");
while (1) { =
if (first_time) { =
fprintf(stderr,”FAKE SERVER creating shared memory.\n");
first_time = FALSE; =
multicast(client,&CreateGC, (int)sz_xCreateGCReq); ii
fprintf(stderr,"FAKE SERVER going to sleep now.\n");
)
sleep(l); =
if (shmem->sm_status=—DIE) { =
fprintf(stderr,”DUMMY: Told to go home...bye.\n");
break; -
=

}

}
fprintf(stderr,”Done.\n");

J*

* Get rid of the semaphore identifier.

*/

for (i=0;1<XBUFFERNUM;i++) =
semctl(shmem->semaphore,i,IPC_RMID,0); -

/* —=

* Get rid of the shared memory identifier. =

*/

shmetl(shmid, IPC_RMID,0);

) /* end main */ -
L}
=
&
W
%
=

K - 30

"

t

ey

T

o

[
[

BB I I

1

1

1

APPENDIX L
PROTOCOL DISTRIBUTOR LISTINGS

/**

The included program listings are prototypes, no warranty is expressed or
implied for their use in any other fashion. They should not be considered
or used as production software. The information in the listings is
supplied on an "as is” basis. No responsibility is assumed for damages
resulting from the use of any information contained in the listings.

The software in these listings has been compiled on Masscomp 6350’'s and
6600's and on Sun 3's and 4's. Modifications may be necessary for use on

other systems.
Fedede ok Fe ek ek ek ARk ek kR kA ko kR dk ok kkkk ok kA kdkkkdkk ok kdkkdkkk /

#define NUMBER_TIMER 100

/*

* File : pd.c

* Author : P. Fitzgerald - SwRI

* Date : 10/3/89

* Description : This file contains the code for the Protocol
Distributor.

*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/lock.h>
#include <utmp.h>

#include <sys/types.h>
#include <rpcsve/rusers.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fentl.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/wait.h>

#include <signal.h>

#include <errno.h>

#include <X11/X.h>

#define NEED REPLIES

#define NEED EVENTS

#include <X11/Xproto.h>
#include <X11/X1lib.h>

#include ”"../includes/ds_manage.h”
#include "../includes/smtypes.h"
#include "../includes/smdef.h”
#include ”../includes/dist.h”
#include "../includes/xdefs.h”

/* EXTERNAL ROUTINES */

/* GLOBAL FUNCTIONS */

void lock(); .
void -.. unlock(); %%
void go_away();
void attach_shared_memory(); _
void distribute_protocol(); =
int timeout(); =
int memory_check();
/* GLOBAL VARIABLES */ -
static int last_time = 500;
struct MC_SHMEMORY *shmem;
char management_host [HOSTNAMLEN] ; —
char hostname [HOSTNAMLEN] ; -
int semaphore;
int semaphore_locked [XBUFFERNUM] ; =
int current_buffer = 0; =]
int shmid;
unsigned short pm_port = 0; en
int distributor_id; &
int pm_fd = -1;
Sk ko kkkkdok ok ke ko kR okoookook kb otk ok ook ok deokokoxok / =
J* -
* Main body
*/ £2
Tain O =
register struct MC_SHMEMORY *memptr; _
register int semaphore_reg; =
register int i; -
/* .
* Tell everyone we are here w
*/
sleep(5);)
fprintf(stderr,”SwRI Protocol Distributor starting...\n"); %;
/*
* Set up to catch timer-timeout signals -
*/ 8
signal (SIGALRM, timeout);
signal (SIGUSR1, memory_check); —
/* =
* Set up to catch kill signals
*/
signal (SIGQUIT, go_away); %%
/*
* Acquire the host name where we reside. =
*/ = |
L-2 =
%

iy

(S

(.

lll" 4

if (gethostname(hostname,sizeof(hostname)) <0) {
perror(”PD;:gethostname:");
go_away();

/*
* Attach to the shared memory area.
*/
attach_shared_memory();
shmem->pd_alive = TRUE; /* say we are here */
shmem->pd_pid = getpid();
#ifdef TRACE
fprintf(stderr,”PD:: just put:3d in memory as my pid\n",6getpid());
#endif
for (i=0;i<XBUFFERNUM;i++)
semaphore_locked[i] = FALSE;

#ifdef LOCKIT
/*
* Lock self into memory
*/
if (plock((int)PROCLOCK)<0)
perror("PD:: plock(PROCLOCK):");
#endif

/*

* Now wait until the Protocol Receiver is completed.

*/

#ifdef TRACE
fprintf(stderr,”PD:: Waiting on PR to initialize....\n");

#endif

last_time = 500;
set_alarm(500);
while (!shmem->pr_init) ({
if (shmem->sm_status==DIE)
go_away();
sleep(l);
}
clear_alarm();

#ifdef TRACE
fprintf(stderr,”PD:: pr just initial{zed\n");
#endif

/*
* Grab the port number of the protocol Distributor so that we
* may make a connection to him.
*/
pm_port = shmem->pm_port;

/*
* Register self as a distributor
*/
#ifdef TRACE '
fprintf(stderr,”registering self %d <%s>\n”",pm_port,hostname);
#endif
register_self(pm_port,hostname);
shmem->distributor_id = distributor_id;
shmem->pd_init = TRUE;

/*
* Now loop on grabbing protocol out shared memory and pumping
* it to the Protocol Distributor.
*/
semaphore_reg = shmem->semaphore;
memptr = shmem;

#ifdef TRACE
fprintf(stderr,”PD:: going into main processing loop.\n");
#endif

while (1) {
/%
* See {f system is closing down.
*/ o
if (memptr->sm_status==DIE) (
fprintf(stderr,”PD: :Requested to shut down.\n");
go_away();
}
/*
* Make sure there is protocol in the buffer
*/ -
if (memptr->buf_stat[current_buffer] =— MULTICAST) {
/*

* Lock the semaphore controlling access to shared memory aréa

*/

lock(semaphore_reg);

/*

% There is some X protocol to be distributed.

*/
/*

* Call a routine to distribute the protocol.
*/
distribute_protocol(pm_£fd);

/*

* Rotate the current buffer.

Ei &] a | N L)

il [

I
i

{1l

i

ail

L]

[

(R

(e

o
f

(l

*/
current_buffer++;
if (current_buffer>=XBUFFERNUM)
. current_buffer = 0;
} /* end if MULTICAST */
else |
sleep(l);

)
} /* end while */

) /* end main */
/**/

/**/

/*
This routine replaces a call to exit() to do cleanup.
*/
void
go_away()
{
int i;
/*
* Tell someone we are going away.
*/
fprintf(stderr,”PD:: EXITING..... \n");

for (i=0;i<XBUFFERNUM;i++) (
current_buffer = 1i;

if (semaphore_locked[i])
unlock(shmem->semaphore);
}
sleep(2);
exit();
} /* end go_away */
JRdk R AR I EITT KT h Rk kkkookkk koo kkkekok /

/**/
/*

* This is a timeout routine to say that we got hung up waiting on

* gsometing to happen.

*/

int

timeout()

{

fprintf(stderr,”PD:: Timeout performing a read or write.\n");

/*

* Set up to catch timer-timeout signals

L-5

*/
signal (SIGALRM, timeout);

if (shmem:>sm_status=-=DIE)
go_away();
#ifdef TRACE
fprintf(stderr,”PD:: setting alarm back to:%d\n”,last_time);
#endif
set_alarm(last_time);

} /* end timeout */
[k e dededkdedededdededokk ook etk ook ek ok ok dokok ok ek ok kook dekok ek ok ok ok ok kkk ok /

Sk ok ok ok kkkkdk ko R Rk ko k ok kA kx kA K
/*
* This routine is called when it receives a SIGUSR1 signal to
* check shared memory for requests from the Protocol Receiver.
*/
int
memory_check()

{
J*

* Set us to ignore further signals for now
*/
signal (SIGUSR1,SIG_IGN);

#ifdef TRACE
fprintf(stderr,”PD:: memory check called as a result of signal\n");
#endif

Ve

* Call the routine to check what is happening in shared memory
* to see if Receiver is requesting anything.

*/

check_shared_memory();

/%
* Reset the signal handler for this type of signal
*/) ’ '
signal(SIGUSRl,memory_check);
#ifdef TRACE
fprintf(stderr,”PD:: memory check exiting\n");
#endif

} /* end memory check */

i R W W Wi Wl

wi

14

€l [

}
|

— /**/

/*
* File : pdio.c
- * Author -, : P, Fitzgerald - SwRI
* Date : 10/3/89
* Description : This file contains the code for the Protocol
: Distributor.
— * 1/0 related routines.
*/
#include <stdio.h>
— #include <rpc/rpc.h>

#include <utmp.h>

#include <sys/types.h>

#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

-— #include <fcntl.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/sem.h>

#include <sys/wait.h>

#include <signal.h>

. #include <errno.h>

-— #include <X11/X.h>

#define NEED REPLIES

#define NEED_EVENTS

#include <X11l/Xproto.h>
#include <X11/X1lib.h>

#include "../includes/ds_manage.h"”
o #include ”../includes/smtypes.h”
- #include "../includes/smdef.h"”

#include "../includes/dist.h”
— /* EXTERNAL ROUTINES */
. /* GLOBAL FUNCTIONS */
g void lock();
void unlock();
void get_window_attributes();
void get_graphics_context();
int connect_to();
int distributable();
void attach_shared_memory();
— void distribute_protocol();
/* GLOBAL VARIABLES */
: extern struct MC_SHMEMORY *shmem;
= extern char management_host[HOSTNAMLEN] ;
extern char hostname [HOSTNAMLEN] ;
- extern int current_buffer;
— extern int shmid;

L -7

extern int pm_£fd;

extern char XFunctName[][80];
/*************;************************************** / -
/* —

* This function is called to connect to a particular =

* port number on a remote machine. -

* It returns a file descriptor.

*/ =
int %
connect_to(port)

register unsigned short port; =
{ =
register struct hostent *hp; -
register int fd; -
static struct sockaddr_in sinhim = { AF_INET };
-
#ifdef TRACE

fprintf(stderr,”PD:: Connect_to called\n”); —
#endif %
/*

* If the port number is not set yet, get it =

*/ : -

if (port==0)
port = shmem->pm_port; —
=

#ifdef TRACE
fprintf(stderr,”PD:: Connecting to port:%d\n”,port); —
#endif =

-

/*

* Get management host name out of shared memory. 5

*/ -

strncpy(management_host,shmem->management_host,HOSTNAMLEN) ;

#ifdef TRACE =
fprintf(stderr,”PD: :managment_host:<%¥s>\n" ,management_host) ;

#endif =
/* -

* Now get hostname, address, and comnect to the Multiplexer.

*/

hp = gethostbyname(management_host); =)
if ('hp) {
fprintf(stderr,”PD::Host '%s’ not found\n” ,management_host); =
go_away(); =
}

#ifdef TRACE =

fprintf(stderr,”PD: :port number->%d\n" ,port); &
L-38 -
-

#endif

bcopy(hp->h_addr, &sinhim.sin_addr, sizeof(sinhim.sin_addr));

sinhim.sin_port = htons(port);
fd = socket(AF_INET,SOCK_STREAM,0);
if (£d<0) {
perror(”PD: :socket (connect_to):");
return(-1);
}
#ifdef TRACE
fprintf(stderr,”PD::socket created.\n");
#endif
if (connect(fd,&sinhim,sizeof(sinhim))<0) (
perror(”PD: :connect (connect_to):");
return(-1);
}

#ifdef TRACE
fprintf(stderr,”PD::Socket and connect to PM ok.\n");

#endif
return(fd);

} /* end connect_to */
J Rk kk ke kkdekdkdekdekkkdekkdokkdekokkokkokkdeekdekkdeokdokokk ook /

J xRk kR IIEIKI KRRk koo ok kol k kokokok /

/*

* This is the main routine which takes protocol out of

* shared memory and sends it to the Protocol Multiplexer.

*/

void

distribute_protocol(fd)
register int fd;

{
register int bytes_written;
register union COMPAK. *cp_reg;
register int length;
union COMPAK cp;

register int bytes_to_do;
register unsigned char *bufptr;
int count;

count = 0;

bytes_to_do = shmem->len[current_buffer];
bufptr = shmem->xbuffer[current_buffer];

/%
* Set up the structure containing all the information.
*/
cp_reg = &cp;

L-9

cp_reg->pdtopm.signal{0] = X _DATA;

cp_reg->pdtopm.signal[l] = 0x0;

cp_reg->pdtopm.signal[2] = 0x0;

cp_reg->pdtopm.signal(3] = 0x0;

cp_reg->pdtopm.header.client = shmem->client[current_buffer];

while (bytes_to_do > 0) {
count++;
length = get_length(bufptr);

/*
* Now determine whether or not the protocol is to be
* distributed.
*/
if (distributable(bufptr)) {

cp_reg->pdtopm.headér.length = length;
bcopy(bufptr,cp_reg->pdtopm.buffer,length);

#ifdef DATA

fprintf(stderr,”"PD:: just copied out some protocol from
buffer:sd\n",current_buffer);

fprintf(stderr,”.... getting ready to write packet to PM\n");

#endif

/*

* Now write the buffer to the multiplexer.

*/

bytes_written - netwrite(fd, (unsigned char

*)cp_reg->compak, (int) PAKLEN+length);

_#ifdef DATA

fprintf(stderr,”PD:: just wrote an X packet of sd
bytes,client:%d.\n",bytes_written,cp_reg->pdtopm.header.client);

#endif

#ifdef SLOW

sleep(l);

#endif

if (bytes_written!-(int)(PAKLEN+1ength)) {
#ifdef GO_AWAY
go_away();
#endif

}
} /* end if distributable */

bytes_to_do -= length;
bufptr += length;

) /* end while bytes_to_do > 0 */

L -10

i

ol g €l Wil oo

/*
* Unlock the semaphore now.
— */ -
#ifdef INTENSE
fprintf(stderr,”PD:: setting buffer %d to SM_EMPTY\n” ,current_buffer);
#endif

(r

shmem->buf_stat[current_buffer] = SM_EMPTY;
unlock(shmem->semaphore) ;

{rr

#ifdef TRACE

if (count != 1)
fprintf(stderr,” (%d)”,count);

#endif

) /* end distribute_protocol */
/**/

e

/**/
- /*

This routine returns the length of the particular
protocol package. Note that the length is the second
two bytes of the packet, in terms of 32 bit
quantities. We left shift by two to get the byte
count.

* % ¥ * *

*x/
int
get_length(ptr)
register unsigned char ~ *ptr;

¢

(

{0

register unsigned short *shortptr;
register unsigned short length;

- : shortptr = (unsigned short *)(ptr+2);
length = (*shortptr<<2);

L return(length);

} /* end get length */
/**/

/**/
/*

* This routine sends an expose event back to the

* multiplexer, along with the source port number.

*/
send_expose_event(fd,window)
register int fd;
register XID window;
{
register int bytes_written;

L-11

| I

unsigned char signal_bytes[SIGLEN+sizeof(XID)];

XI1D *ptr;
#ifdef TRACE =
fprintf(stderr,”PD:: send_expose_event back to pm.\n");
#endif _
/* -

* Set up the parameters.

*/ ==
signal bytes[0] = EXPOSE;]
signal bytes[l] = 0;
signal_bytes(2] = 0; _
signal bytes[3] = 0; %
ptr = (XID *)&signal bytes[4];

*ptr = window;
bytes_written = netwrite(fd,signal bytes,SIGLEN+sizeof(XID)); _
if (bytes written!=SIGLEN+sizeof(XID)) ¢ L
perror("PD:: write (send expose_event):");
fprintf(stderr,”PD:: bytes_written:3d length:%d £d:sd\n”, —
bytes_written,SIGLEN+sizeof(XID),fd); -
#ifdef GO_AWAY
go_away(); =
#endif =
: .
shmem->pd_propagate_expose = FALSE;
-

#ifdef TRACE

fprintf(stderr,”PD:: send expose to remote, window: Ox%x\n”,window); o

fprintf(stderr,”PD:: send_expose_event complete.\n"); &

#endif

®il

) /* end send_expose_event */
SRR Ak Rk kkkkk ok kkk ok koo okkokobkokokokokok ook /

/**/
/*
* This routine makes a request of the Protocol Multiplexer

* to send back information concerning the window attributes =
* for a particular channel. -
*/

void =

get window_attributes(£fd)]
register int fd;

(=
register short *shortptr; ﬁ
union COMPAK cp;
int bytes_written; —

#ifdef TRACE 8

L - 12

W

C et [

ﬂ

fprintf(stderr,”PD:: GET_WINDOW_ATTRIBUTES noticed in shmem\n”);
#endif

/% .
* Set up the parameters to request Window Attributes state info
*/

cp.pdtopm.signal[0] = GWATS;

cp.pdtopm.signal{l] = O;

/* Send the Receiver’s port number with request */
shortptr = (short *)&cp.pdtopm.signal(2];
*shortptr = shmem->wat_port;

/* Use the length for the channel number */
cp.pdtopm.header.length = shmem->wat_channel;

/* Use the client for the graphics context id */
cp.pdtopm.header.client = shmem->wat_id;

#ifdef DATA

fprintf(stderr,”PD:: get_window_attributes for wid:Ox%x channel:$d\n",
shmem->wat_id,shmem->wat_channel);

#endif

/*
* Now write that to the Protocol Multiplexer
*/
bytes_written = netwrite(fd, &cp, PAKLEN);
if (bytes_written != PAKLEN) ({
perror(”read (get_window_attributes):”);
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
bytes_written,PAKLEN,fd);
#ifdef GO_AWAY
go_away();
#endif
}

#ifdef TRACE
fprintf(stderr,”PD:: wrote get window attributes request to PM.\n");

#endif

/*
* Notify the Protocol Receiver that we have made the request of the
* Multiplexer. It is now time for the Receiver to wait on the results.

*/
shmem->get _wat = FALSE;

} /* end get_window_attributes */
JxF kR kxR R Rk kdkk ok okkkkokokokkokkdekkokk ook ok kokokk /

/**/

/*

L-13

% This routine makes a request of the Protocol Multiplexer
* to send back information concerning the state information

;i 0

* for a particular gc.

*/

void

get graphics_context(fd)
register int fd;

{
register short *shortptr;
union COMPAK cp;
int bytes_written;

#ifdef TRACE
fprintf(stderxr,”PD:: GET_GRAPHICS_CONTEXT noticed in shmem\n");

#endif

/*

* Set up the parameters to request GC state information

*/

cp.pdtopm.signal{0] = GGCS;
cp.pdtopm.signal[l] = O;

/* Send the Receiver'’s port number with request */
shortptr = (short *)&cp.pdtopm.signal[2];
*shortptr = shmem->gc_port;

/* Use the length for the channel number */
cp.pdtopm.header.length = shmem->gc_channel;

/* Use the client for the graphics context id */
cp.pdtopm.header.client = shmem->gc_id;

#ifdef TRACE

fprintf(stderr,”PD:: get_graphics_context for gc:0xdx channel:sd\n”,

shmem->gc_1id, shmem->gc_channel);
fprintf(stderr,”PD:: fd:%d\n",fd);

#endif

/*

* Now write that to the Protocol Multiplexer

*/

bytes_written = netwrite(fd,&cp, PAKLEN);
if (bytes_written != PAKLEN) ({(

perror("PD:: write (get_graphics_context):");
fprintf(stderr,”"PD:: bytes_written:%d length:%d fd:sd.\n",
bytes_written, PAKLEN, fd);

#ifdef GO_AWAY

#endif
}

go_away();

#ifdef TRACE

L - 14

o @EN N mE mn .

]

G = . ull | € W

fprintf(stderr,”PD:: wrote get graphics context request to PM.\n");
fprintf(stderr,”PD:: bytes_written was :8d\n” ,bytes_written);
fprintf(stderr,”PD:: written to:%d pm_fd:sd\n", fd,pm_£fd);

#endif -

/*
* Notify the Protocol Receiver that we have made the request of the
* Multiplexer. It is now time for the Receiver to wait on the results.
*/
shmem->get _gc = FALSE;

) /* end get_graphics_context */
/**/

/**/

/*

* This routine is called whenever a request is received

* from the Protocol Receiver to send out a particular window
* attributes state.

*/

void

send window_attributes(fd)
register int fd;

{
register int bytes written;
register short *shortptr;
register unsigned long *longptr;

unsigned char signal bytes[SIGLEN+8];

/*
* Write out the signal bytes indicating what we are sending.
*/
#ifdef TRACE
fprintf(stderr,”PD:: sending out a WATS buddy!!!!!!\n");
#endif
signal_bytes[O0] = WATS;
signal bytes[1] = 0;
/* Place the Receiver'’s port number there */
shortptr = (short *)&signal bytes([2];
*shortptr = (short)shmem->wat_port;
/* Now place the background pixel value */
longptr = (unsigned long *)&signal bytes(4];
*longptr = shmem->wat_bg_pixel;
#ifdef TRACE
fprintf(stderr,”PD:: JUST SENT BACKGROUND wat_bg pixel
of: 0x%x\n" ,*longptr);
#endif

/* Now place the parent XID value */

L -15

longptr = (unsigned long *)&signal_bytes[8];
*longptr = shmem->wat_parent;

#ifdef TRACE .
fprintf(stderr,”PD:: JUST SENT PARENT wat_parent:0x%x\n",*longptr);

#endif

bytes_written = netwrite(fd,signal_bytes,SIGLEN+8);
if (bytes _written != SIGLEN+8) ({
perror("PD:: write (send_window_attributes/signal):");
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
bytes_written,SIGLEN+8,fd);
#ifdef GO_AWAY
go_away();
#endif
)

#ifdef TRACE

fprintf(stderr,”PD:: just wrote signal bytes for WATS\n");
fprintf(stderr,”"PD::........ Ox%x Ox%x Oxtx Oxsx\n”,
signal_bytes[O0],

signal bytes[l],

signal bytes[2],

signal bytes[3]);

#endif

/%
* Write those values out to the file descriptor
*/
bytes_written = netwrite(fd, &shmem->wats,sizeof (XWindowAttributes));
if (bytes_written != sizeof(XWindowAttributes)) {
perror("PD::write(send_window_attributes/XWindowAttributes):");
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
bytes_written,sizeof(XW1ndowAttributes),fd);
#ifdef GO_AWAY
go_away();
#endif
)
#ifdef TRACE
fprintf(stderr,”"PD:: just wrote window attributes
bytes:sd\n”,bytes_written);
#endif

/* =
* Clear the flag and let the PR know we did it

*/
shmem->send_wat = FALSE;

} /* end send_window_attributes */
JRFEk kR ek kxR ko okkkkk ko ok ok /

/**/

L - 16

| |
il

'
Wi

o

| il

& Wi

&l

g

i

@i e .

&l
| s

i

i |

/*
* This routine 1is called whenever a request is received
* from the Protocol Receiver to send out a particular

* graphics context state.

*/
void
send_graphics_context(£fd)
register int fd;
{
register int i;
register int index;
register int bytes_written;
register unsigned short *shortptr;
XID window;
unsigned char signal bytes[SIGLEN+4];
#ifdef TRACE
fprintf(stderr,”PD:: SEND_GRAPHICS_REQUEST for STATE for 1id:0x%x
port:sd\n”,
shmem->gc_1d, shmem->gc_port);
#endif
/*
* Search the shared memory area for the particular
* xid entry.
*/
index = -1;

for (i=0;i<MAX GCS;i++) |
if (shmem->gcwin{i].gid=—shmem->gc_id) {
index = i;
break;
}
) /* end for */

J*
* If we cannot find the proper one
*/
if (index<0) {
fprintf(stderr,”PD:: Invalid XID for GGCS: 0x%x\n" , shmem->gc_id);
for (1 = 0; 1 < MAX GCS; i++)

fprintf(stderr, " . ..shmem->gcwin[sd].gid : Oxsx\n", i,
shmem->gcwin(1i].gid);
shmem->gc_1id = 0;

shmem->gc_channel = -1;
#ifdef GO_AWAY
go_away();
#endif
)
else (
/*
* Write out the signal bytes indicating what we are sending.

*/

L -17

#ifdef TRACE

fprintf(stderr,”PD:: sending out a GCS buddy!!!!!!\n");
#endif
signal-bytes([0] = GCS;
signal bytes([1] = 0;
/* Place the Receiver’s port number there */
shortptr = (unsigned short *)&signal bytes([2];
*shortptr = (unsigned short)shmem->gc_port;
#ifdef TRACE

fprintf(stderr,”PD:: shmem->gc_port sending is:%d\n",shmem->gc_port);
#endif
bytes_written = netwrite(fd,signal bytes,SIGLEN);
if (bytes_written != SIGLEN) { .
perror(”"PD:: write (send_graphics_context/signal):");
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
bytes_written,SIGLEN, fd);
#ifdef GO_AWAY
go_away();
#endif
)
#ifdef TRACE
fprintf(stderr,”PD:: just wrote signal bytes for GCS\n");
fprintf(stderr,"PD::........ Oxgx Ox%x Ox3x Ox%x\n",
signal_bytes[0],
signal_bytes[l],
signal_bytes[2],
signal _bytes[3]);
#endif

/*
*+ Write those values out to the file descriptor
*/
bytes_written = netwrite(fd, &shmem->gcwin{index].GCValues,
sizeof (XGCValues));
if (bytes_written != sizeof (XGCValues)) {
perror("PD:: write (send_graphics_context/GCValues):”);
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
byteséwritten,sizeof(XGCValues),fd);
#ifdef GO_AWAY
go_away();
#endif
)

#ifdef TRACE

fprintf(stderr,”PD:: just wrote graphics context bytes:%d (index:%d)\n”

bytes_written, index);

fprintf(stderr,"PD:: ...fg: $d, bg: sd\n"

shmem->gcwin[index].GCValues.foreground,

shmem->gcwin[index].GCValues.background);
#endif ’

L - 18

I

ol mE E i

1N

.

|
i

I
'

1

[l

@ e o« i

(I {

3

-

rrt

b

L}

/*
* Now retrieve the XID of the window associated with the gc
*/

window = shmem->gcwin[index].window;

#ifdef TRACE

fprintf(stderxr,”"PD:: original gc is
Ox%x\n" , shmem->gcwin[index].gid);

fprintf(stderr,”PD:: associated window is Oxsx\n”,window);
#endif

bytes_written = netwrite(fd,&window,sizeof(window));
if (bytes written != sizeof(window)) ({
perror(”"PD:: write (send_graphics_context/window):");
fprintf(stderr,”PD:: bytes_written:%d length:%d fd:%d.\n",
bytes_written,sizeof(window),fd);
#1fdef GO_AWAY
go_away();
#endif
}

#ifdef TRACE
fprintf(stderr,”PD:: just wrote window bytes of:%d\n”" ,bytes_written);

#tendif

) /* end else */

/*
* Let the Protocol Receiver know we fulfilled his request
*/
shmem->send_gc = FALSE;

) /* end send_graphics_context */
JRkkdddF Rk dkkkdkdkdkkok ok kkdekk ko ook ok koo /

L-19

#define NUMBER TIMER 100

/*

* File

* Author
* Date

* Descri
Distribut
* Utilit
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

: pdutil.c
~ : P, Fitzgerald - SwRI
: 10/3/89

ption : This file contains the code for

or.
y routines and X routines

<stdio.h>
<rpc/rpec.h>
<utmp.h>
<sys/types.h>
<rpcsvc/rusers.h>
<sys/socket.h>
<netinet/in.h>
<netdb.h>
<fentl.h>
<sys/ipc.h>
<sys/shm.h>
<sys/sem.h>
<sys/wait.h>
<signal.h>
<errno.h>
<X11/X.h>

#define NEED_REPLIES
#define NEED_EVENTS

#include
#include
#include
#include
#include
#include

<X11/Xproto.h>
<X11/X1lib.h>
"../includes/ds_manage.h”
", ./includes/smtypes.h”
", ./includes/smdef.h”

7. ./includes/dist.h”

/% EXTERNAL ROUTINES */

extern

xdr_RegDist();

extern int connect_to();

/% GLOBAL FUNCTIONS */

static int semcall();

void lock();

void unlock();

int distributable();

int callme();

void go_away();

void attach_shared_memory();
void check_shared_memory();

/* GLOBAL VARIABLES */
extern struct MC_SHMEMORY +*shmem;

extern int

extern int current_buffer;

L - 20

semaphore_locked [XBUFFERNUM] ;

T

T

Sl

.
! 1 1[
v e

M
i

(i

i

"
1l

mitr

fin

extern int shmid;

extern int pm_£fd;
extern int distributor_id;

extern char . XFunctName[][80];

/**/
/%

* This routine attaches to the shared memory area used between

% the multicast (server mod) function, 1ldm, and protocol distributor
(me) .

* We will keep trying to attach for an awfully long time before giving
up.

*/
void

attach_shared_memory()

(

alarm(500);

shmid = -1;
while (shmid<0) {
/* attach to shared memory */
shmid = shmget((int)SM_KEY,
sizeof(struct MC_SHMEMORY),0777);
sleep(l);
)
shmem = (struct MC_SHMEMORY *)shmat(shmid,0,0);
if (shmem == (struct MC_SHMEMORY *)-1) {
perror("PD: :Unable to attach to shared memory.”);
go_away();
}

clear_alarm();

‘#ifdef TRACE

printf(”PD: :attached to shared memory Ox$x\n" , shmem) ;
#endif

) /* end attach_shared_memory */
/**/

/**/
/*
* This routine locks on a semaphore.
*/
void
lock(id)
register int id;

{

if (semaphore_locked[current_buffer]) {(
fprintf(stderr,”PD:: O0OPS, forgot to unlock a semaphore:%d\n”",

L-21

current_buffer);
return;

/*

* We will loop here until we are able to lock the semaphore.
* This will allow us to process other events and requests

* besides just protocol to distribute.
*/
#ifdef INTENSE

fprintf(stderr,”PD:: going to lock buffer:#d\n”,current_buffer);

#endif
semcall(id,-1);
semaphore_locked[current_buffer] = TRUE;

#ifdef INTENSE

fprintf(stderr,”PD:: just locked buffer:%d\n”,current_buffer);

#tendif

} /* end lock */
SRk kkkk ke kkkdkokkkkdokkkkekok kb ok ko kdkkkdekkokokk /

/R Rk kg R kRF Kk kbbb ok kokok ok kkk ok kkk Rk ok kR kA IR I AR I,/
J*
* This routine unlocks a semaphore.
*/
void
unlock(id)
register int id;
{
if (!semaphore_locked[current_buffer]) {
fprintf(stderr,”PD:: OOPS, called unlock
unlocked: td\n",
current_buffer);
return;
}

semcall(id, l);
semaphore_locked[current_buffer] = FALSE;

#ifdef INTENSE

fprintf(stderr,”"PD:: just unlocked buffer:sd\n”,current_buffer);

#endif

} /* end unlock */
JRRRRxERE TR TRk kb ke kkok ok kol /

/**/
/*
* This routine performs the semaphore operations.
*/
static int
semcall(sid,op)
register int sid;

L - 22

when

already

|

@i

LI

I

B}

LI

iy

l

Ll

&

&

Il

(I

o

t (

NI

e

U

register int op;

struct sembuff sb;

sb.sem_num = current_buffer;
sb.sem_op = op;
sb.sem _flg = 0;

return(semop(sid,&sb,1));

} /* end semcall */
J xRk Rk kR RIFIIII ISRk Rk dokkokokokokkekokododok dekekokok [

/**/
/*

* This routine determines if the protocol passed in
* is for distribution or ignoring.

*/
int
distributable(xptr)
register unsigned char *xptr;
{
register unsigned char xtype;

xtype = *xptr;

/*
* Select X protocol for distribution or ignoring.
*/

switch(xtype)

/* IGNORE - RETURN FALSE */
case X_GetWindowAttributes:
case X_ChangeSaveSet:
case X_ReparentWindow:
case X_CirculateWindow:
case X_GetGeometry:
case X_QueryTree:
case X InternAtom:
case X_GetAtomName:
case X_ChangeProperty:
case X_GetProperty:
case X DeleteProperty:
case X ListProperties:
case X_SetSelectionOwner:
case X_GetSelectionOwner:
case X_ConvertSelection:
case X_SendEvent:
case X GrabPointer:
case X_UngrabPointer:
case X_GrabButton:
case X_UngrabButton:

L - 23

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

X_ChangeActivePointerGrab:
X_GrabKeyboard:
X_UngrabKeyboard:
X.GrabKey:
X_UngrabKey:
X_AllowEvents:

X GrabServer:
X_UngrabServer:

X QueryPointer:
X_GetMotionEvents:
X_TranslateCoords:

X WarpPointer:
X_SetInputFocus:

X _GetInputFocus:
X_QueryKeymap:
X_QueryTextExtents:

X _ListFonts:
X_ListFontsWithInfo:
X_GetFontPath:
X_SetFontPath:

X SetDashes:

X GetlImage:

X InstallColormap:

X UninstallColormap:
X ListInstalledColormaps:
X_QueryColors:
X_LookupColor:
X_CreateCursor:
X_CreateGlyphCursor:
X_FreeCursor:

X _RecolorCursor:

X QueryBestSize:
X_QueryExtension:

X ListExtensions:
X_ChangeKeyboardMapping:
X_GetKeyboardMapping:
X_ChangeKeyboardControl:
X_GetKeyboardControl:
X Bell:
X_ChangePointerControl:
X_GetPointerControl:
X_SetScreenSaver:
X_GetScreenSaver:
X_ChangeHosts:
X_ListHosts:
X_SetAccessControl:
X_SetCloseDownMode:
X_RotateProperties:
X_ForceScreenSaver:
X_SetPointerMapping:
X_GetPointerMapping:
X _SetModifierMapping:

L - 24

/*

/*
/*
/*
/*

N NN N

*/

*/
*/
*/

Qi

L] Ui

el

aui

i

1
i

L]

i

n
i

il

Cr

[

Ll

t tr -

oI

(T

case

case

case

case

case

case

/* Currently

fprintf(stderr,”"PD:: IGNORING. . .<%s>.\n" ,XFunctName [xtype]);

/* endif */

X_GetModifierMapping:
X_NoOperation:
X_AllocColor:
X.AllocNamedColor:

X _AllocColorCells:

X _AllocColorPlanes:

/% 2 %/
/% 7 %/
/% 2 %/
/% 7 %/

we are IGNORING: 78 operations */
/* 1fdef TRACE */

return(FALSE);

/* DISTRIBUTE - RETURN TRUE */

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

X _CreateWindow:

X _ChangeWindowAttributes:

X_DestroyWindow:
X_DestroySubwindows:
X MapWindow:

X _MapSubwindows:
X_UnmapWindow:
X_UnmapSubwindows:
X_ConfigureWindow:
X_OpenFont:

X CloseFont:

X CreatePixmap:
X_FreePixmap:
X_CreateGC:
X_ChangeGC:
X_CopyGC:
X_SetClipRectangles:
X_FreeGC:

X ClearArea:
X_CopyArea:
X_CopyPlane:
X_PolyPoint:
X_PolyLine:
X_PolySegment:
X_PolyRectangle:

X _PolyArc:

X FillPoly:

X PolyFillRectangle:
X_PolyFillArc:
X_Putlmage:
X_PolyText8:

X PolyTextl6:
X_ImageText8:
X_ImageTextl6:

X CreateColormap:
X_FreeColormap:
X_CopyColormapAndFree:
X FreeColors:
X_StoreColors:

L-25

/* 2 */
/* T */

case X_StoreNamedColor: /* 7 %/
case X _KillClient:
/* Currently we are Processing: 51 operations. */
#ifdef DATA -~
fprintf(stderr,”PD:: PROCESSING. . .<%$s>.\n" ,XFunctName [xtype]);
#endif
return(TRUE) ;
default:
fprintf(stderr,”"PD:: Unknown type of
protocol:0x8x\n”",xtype);
#ifdef GO_AWAY
go_away();
#endif
break;
} /* end switch */
return{FALSE) ;

} /* end distributable */
[/ Fkk Rk kbbb kkkok ko ko k ok ke ek ddededekdedekekekek /

[kdkdde Rk koo kR ok Rk ko ko kokk
/*

* This routine registers this distributor with the

* Central Distribution Manager, who in turn, notifies
the Protocol Multiplexer of this request.

*/
void
register_self(port,hostname)
int port;
char *hostname;
{
int retval;

struct DistRegister DistRegister;

#1fdef TRACE

fprintf(stderr,”"PD:: register self port:ad hostname :<$s>\n",
port,hostname) ;

#endif

/*
* First register self with the Central Distributotion
* Manager
*/
sprintf(DistRegister.dis;ggme,7%5",hostngme);
retval = clnt_broadcast(CDM_PROG,CDM_VERS,CDM_REG_DIST,
xdr_RegDist,&DistRegister,
xdr_RegDist,&DistRegister,callme);
distributor_id = DistRegister.distributor_id;

#ifdef TRACE

fprintf(stderr,”PD:: register self <%s>: returned an id of %d\n",
hostname,

L - 26

. | Wi . a i

|

i

1 a vl e e 6 |

i

distributor_id);
#endif
/*
* Now connect.with the Protocol Multiplexer
*/
pm_fd = connect_to((unsigned short)port);
set_no_block(pm_£fd);

#ifdef TRACE
fprintf(stderr,”PD:: connected to:%d\n” ,pm_£d);
#endif

) /* end register_self */
JhkdFkk Rk Rk ko kR k ok ko kok ok ok kokokk ko /

JRFFE Rk kR Rk oekk Rk koo kb kb kb kokkkek /
/* ‘
* Short and simple routine to perform callback on the RPC
* return call.
*/
int
callme (out,addr)
char *out;
struct sockaddr_in +*addr;
(
return(l);

) /* end callme */
JhFk Rk kR koo kR koo ok ook /

Sk kK kkIEIFIIIIA TR T I T TR KKKk dodokokokkokok /
/*
* This routine performs checks on various shared
* memory variables and flags to determine if the
* Protocol Receiver is requesting any work to be
* performed, or if the system is dying.
*/
void
check_shared_memory()

{
register struct MC_SHMEMORY *memptr;

memptr = shmem;

/%
* Check to see if we are to exit
*/
if (memptr->sm_status=-=DIE)
go_away();
/*

* Now check to see if the Protocol Receiver needs us